Chemical energetics II: entropy, Gibbs free energy, feasibility of reactions

Chemical Energetics II – Entropy, Gibbs Free Energy & Feasibility of Reactions

1. Scope – What belongs to AS and what belongs to A‑level?

  • AS‑level (Cambridge International AS & A Level Chemistry 9701 – Physical Chemistry → 5 Chemical Energetics)
    • Enthalpy changes, Hess’s law, bond‑energy cycles, calorimetry.
  • A‑level (Cambridge International A Level Chemistry 9701 – Physical Chemistry → 5 Chemical Energetics, 23 Electrochemistry, 24 Equilibria, 25 Reaction kinetics)
    • All AS topics plus entropy, Gibbs free energy, spontaneity, equilibrium constants, electro‑chemical cell potentials and their link to reaction kinetics.

In the notes below, material marked A‑level only is not required for AS students but is essential for the full A‑level syllabus.


2. AS‑level Refresher – Enthalpy & Calorimetry

This short section supplies the background that A‑level topics build on.

  • Enthalpy change, ΔH – heat absorbed or released at constant pressure.
  • Standard enthalpy of formation, ΔH_f° – ΔH when 1 mol of a compound forms from its elements in their standard states (298 K, 1 bar).
  • Hess’s law – enthalpy is a state function; the overall ΔH for a reaction equals the sum of ΔH for any series of steps that lead from reactants to products.
  • Bond‑energy calculations – use average bond enthalpies to estimate ΔH: $$\Delta H_{\text{rxn}} \approx \sum \text{(bonds broken)} - \sum \text{(bonds formed)}$$
  • Calorimetry – quantitative measurement of heat: $$q = m c \Delta T \qquad\text{or}\qquad q = C_{\text{cal}} \Delta T$$ where m = mass, c = specific heat capacity, C_cal = calorimeter heat capacity.

Worked Example (AS only)

Combustion of propane (simplified, ΔH_f° values only):

\[ \mathrm{C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)} \] \[ \Delta H^{\circ}_{\text{rxn}} = \big[3(-393.5) + 4(-285.8)\big] - \big[-104.7 + 5(0)\big] = -2\,221\ \text{kJ mol}^{-1} \]

The large negative ΔH tells us the reaction is exothermic; no entropy or ΔG is needed at AS level.


2. Entropy (S) [A‑level only]

2.1. Definition and Statistical Basis

Entropy measures the dispersal of energy and matter in a system. Statistically it reflects the number of microscopic arrangements (microstates) compatible with a macroscopic state.

\[ S = k_{\mathrm{B}} \ln W \]
  • $k_{\mathrm{B}} = 1.381\times10^{-23}\ \text{J K}^{-1}$ (Boltzmann constant)
  • $W$ = number of accessible microstates

2.2. The Second Law of Thermodynamics

For any spontaneous process at constant temperature and pressure:

\[ \Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} > 0 \]
Entropy change of the surroundings

When the process occurs at constant pressure (the usual case in chemistry), the heat exchanged with the surroundings is $q_{\text{p}} = \Delta H_{\text{system}}$. Therefore:

\[ \Delta S_{\text{surroundings}} = -\frac{\Delta H_{\text{system}}}{T} \]

2.3. Standard Molar Entropy ($S^{\circ}$)

Tabulated at 298 K and 1 bar. By the Third Law, a perfect crystal at 0 K has $S = 0$, so all $S^{\circ}$ values are positive.

Substance$S^{\circ}$ (J mol‑1K‑1)State (298 K)
H₂(g)130.7Gas
O₂(g)205.0Gas
H₂O(l)69.9Liquid
CO₂(g)213.7Gas

2.4. Calculating Entropy Change for a Reaction

\[ \Delta S^{\circ}_{\text{rxn}} = \sumu_i S^{\circ}_{\text{products}} - \sumu_i S^{\circ}_{\text{reactants}} \]
  • $u_i$ = stoichiometric coefficient (positive for products, negative for reactants).
Quantitative Example (entropy of surroundings)

Dissolution of ammonium chloride, $\mathrm{NH_4Cl(s) \rightarrow NH_4^{+}(aq) + Cl^{-}(aq)}$.

  • ΔH° = +14.8 kJ mol⁻¹ (endothermic)
  • At 298 K, $\Delta S_{\text{surroundings}} = -\dfrac{+14.8\times10^{3}}{298} = -49.7\ \text{J mol}^{-1}\text{K}^{-1}$
  • Using tabulated $S^{\circ}$ values, $\Delta S_{\text{system}}^{\circ}=+84.2\ \text{J mol}^{-1}\text{K}^{-1}$
  • Overall $\Delta S_{\text{universe}} = +84.2 - 49.7 = +34.5\ \text{J mol}^{-1}\text{K}^{-1} >0$, so the dissolution is spontaneous.

3. Gibbs Free Energy (G) [A‑level only]

3.1. Fundamental Relation

\[ \Delta G = \Delta H - T\Delta S \qquad\text{(constant }T\text{ and }p\text{)} \]

3.2. Sign Interpretation

  • ΔG < 0 – spontaneous (thermodynamically favourable).
  • ΔG = 0 – system at equilibrium.
  • ΔG > 0 – non‑spontaneous under the given conditions.

3.3. Standard Gibbs Free Energy Change (ΔG°)

\[ \Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \]

ΔG° values are tabulated for many reactions; otherwise calculate from ΔH° and ΔS°.

3.4. Flow‑chart Linking ΔH°, ΔS°, ΔG° and K

ΔH°   ΔS°  ──►  ΔG° = ΔH° – TΔS°  ──►  Sign of ΔG° → Spontaneity?
                              │
                              ▼
                     ΔG° = –RT ln K
                              │
                              ▼
                         Equilibrium constant K

3.5. ΔG° ↔ Equilibrium Constant (K)

\[ \Delta G^{\circ} = -RT\ln K \qquad\Longleftrightarrow\qquad K = \exp\!\left(-\frac{\Delta G^{\circ}}{RT}\right) \]

3.6. ΔG° ↔ Cell Potential (E°) – Electrochemistry Link

\[ \Delta G = -nF E \qquad\text{and at standard state}\qquad \Delta G^{\circ} = -nF E^{\circ} \]
  • $n$ = moles of electrons transferred.
  • $F = 96\,485\ \text{C mol}^{-1}$ (Faraday constant).
  • Combining with the ΔG°–K relation gives $E^{\circ} = \dfrac{RT}{nF}\ln K$.
Worked Example – Using ΔG° to Find E°

From the Zn/Cu cell example (see §5.3) we obtained $\Delta G^{\circ} = -2.12\times10^{5}\ \text{J mol}^{-1}$.

\[ E^{\circ} = -\frac{\Delta G^{\circ}}{nF} = -\frac{-2.12\times10^{5}}{2 \times 96\,485} = +1.10\ \text{V} \]

The value matches the tabulated cell potential, confirming the consistency of the thermodynamic relationships.

3.7. Temperature Dependence – van ’t Hoff Equation

\[ \ln K = -\frac{\Delta H^{\circ}}{R}\frac{1}{T} + \frac{\Delta S^{\circ}}{R} \]

A plot of $\ln K$ versus $1/T$ is linear:

  • Slope = $-\Delta H^{\circ}/R$ → gives ΔH°.
  • Intercept = $\Delta S^{\circ}/R$ → gives ΔS°.
Numerical Illustration

Equilibrium: $\mathrm{N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)}$

T (K)K
5001.0×10⁻³
6004.0×10⁻³
7001.5×10⁻²

Calculate $\ln K$ and $1/T$, fit a straight line (by hand or calculator). The slope obtained is $-1.20\times10^{4}\ \text{K}$, giving

\[ \Delta H^{\circ} = -\text{slope}\times R = (1.20\times10^{4})(8.314) \approx 1.0\times10^{5}\ \text{J mol}^{-1} \]

The positive ΔH° shows the synthesis of ammonia is endothermic under these conditions.

3.8. Temperature of Spontaneity (T_eq)

When ΔH° and ΔS° have the same sign, the sign of ΔG can change with temperature. The temperature at which the reaction becomes spontaneous (ΔG = 0) is:

\[ T_{\text{eq}} = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} \]

3.9. Brief Note on Kinetics

A negative ΔG tells us that a reaction is thermodynamically favourable, but it says nothing about how fast it proceeds. The activation energy $E_a$ governs the rate; catalysts lower $E_a$ without changing ΔG.


4. Worked Examples (A‑level)

4.1. Entropy Change for the Reaction $\displaystyle \mathrm{N_2(g) + O_2(g) \rightarrow 2NO(g)}$

Species$S^{\circ}$ (J mol‑1K‑1)
N₂(g)191.5
O₂(g)205.0
NO(g)210.8
\[ \Delta S^{\circ} = [2(210.8)] - [191.5 + 205.0] = 421.6 - 396.5 = +25.1\ \text{J mol}^{-1}\text{K}^{-1} \]

Positive ΔS° favours spontaneity at higher temperatures (see §3.8).

4.2. Gibbs Free Energy & Equilibrium Constant for the Combustion of Methane

Reaction: $\displaystyle \mathrm{CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)}$

SpeciesΔH_f° (kJ mol⁻¹)S° (J mol⁻¹K⁻¹)
CH₄(g)-74.8186.3
O₂(g)0.0205.0
CO₂(g)-393.5213.7
H₂O(l)-285.869.9
  1. Standard enthalpy change \[ \Delta H^{\circ}_{\text{rxn}} = \big[-393.5 + 2(-285.8)\big] - \big[-74.8 + 2(0.0)\big] = -802.3\ \text{kJ mol}^{-1} \]
  2. Standard entropy change \[ \Delta S^{\circ}_{\text{rxn}} = \big[213.7 + 2(69.9)\big] - \big[186.3 + 2(205.0)\big] = -242.8\ \text{J mol}^{-1}\text{K}^{-1} \]
  3. Standard Gibbs free energy at 298 K \[ \Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = (-802.3\times10^{3}) - (298)(-242.8) = -7.78\times10^{5}\ \text{J mol}^{-1} \]
  4. Equilibrium constant \[ K = \exp\!\Bigl(-\frac{\Delta G^{\circ}}{RT}\Bigr) = \exp\!\Bigl(\frac{7.78\times10^{5}}{8.314\times298}\Bigr) \approx 1.2\times10^{135} \]

    Such a huge $K$ confirms the reaction proceeds essentially to completion.

4.3. Electrochemical Cell – Zn(s) | Zn²⁺(aq) || Cu²⁺(aq) | Cu(s)

  • $n = 2$ mol e⁻
  • Standard potentials: $E^{\circ}_{\text{Cu}^{2+}/\text{Cu}} = +0.34\ \text{V}$, $E^{\circ}_{\text{Zn}^{2+}/\text{Zn}} = -0.76\ \text{V}$

Cell potential:

\[ E^{\circ}_{\text{cell}} = 0.34 - (-0.76) = +1.10\ \text{V} \]

Corresponding ΔG° (using the ΔG° ↔ E° link):

\[ \Delta G^{\circ} = -nF E^{\circ}_{\text{cell}} = -(2)(96\,485)(1.10) = -2.12\times10^{5}\ \text{J mol}^{-1} \]

From ΔG° to equilibrium constant:

\[ K = \exp\!\Bigl(\frac{2.12\times10^{5}}{8.314\times298}\Bigr) \approx 1.6\times10^{37} \]

4.4. Temperature of Spontaneity – Example

Consider the reaction $\mathrm{A(g) \rightarrow B(g)}$ with $\Delta H^{\circ}=+40\ \text{kJ mol}^{-1}$ and $\Delta S^{\circ}=+120\ \text{J mol}^{-1}\text{K}^{-1}$.

\[ T_{\text{eq}} = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{40\,000}{120} \approx 333\ \text{K} \]

Below 333 K, ΔG > 0 (non‑spontaneous); above 333 K, ΔG < 0 (spontaneous).


5. Checklist for Chemical Energetics Problems (A‑level)

  1. Write the balanced equation, including physical states.
  2. Identify the required data (ΔH_f°, S°, E°, etc.).
  3. Calculate ΔH° using Hess’s law or bond‑energy cycles.
  4. Calculate ΔS° from standard molar entropy tables.
  5. Obtain ΔG°:
    • ΔG° = ΔH° – TΔS° (general)
    • ΔG° = –nF E° (electrochemical cell)
  6. Assess spontaneity at the temperature given:
    • ΔG < 0 → spontaneous.
    • ΔG > 0 → non‑spontaneous.
    • ΔG = 0 → equilibrium.
  7. If required, convert ΔG° to an equilibrium constant: \[ K = \exp\!\bigl(-\Delta G^{\circ}/RT\bigr) \] or calculate ΔG° from a given $K$.
  8. For temperature‑dependence questions, use the van ’t Hoff equation: \[ \ln K = -\frac{\Delta H^{\circ}}{R}\frac{1}{T} + \frac{\Delta S^{\circ}}{R} \] or the temperature of spontaneity formula $T_{\text{eq}}=\Delta H^{\circ}/\Delta S^{\circ}$.
  9. Comment on kinetic factors (activation energy, catalysts) if the question asks about the observable rate.

6. Quick Reference Table

Quantity Expression Typical Use
Statistical entropy $S = k_{\mathrm{B}}\ln W$ Conceptual basis of disorder.
Standard entropy change $\Delta S^{\circ}_{\text{rxn}} = \sumu_i S^{\circ}_{\text{products}} - \sumu_i S^{\circ}_{\text{reactants}}$ Calculate ΔS° for a reaction.
Enthalpy change $\Delta H = \sum n\Delta H_f^{\circ}(\text{products}) - \sum n\Delta H_f^{\circ}(\text{reactants})$ Hess’s law, bond‑energy calculations.
Gibbs free energy $\Delta G = \Delta H - T\Delta S$ Assess spontaneity.
Standard Gibbs free energy $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ Link to equilibrium constant & cell potential.
ΔG° ↔ K $\Delta G^{\circ} = -RT\ln K$ Calculate K or ΔG°.
ΔG° ↔ E° $\Delta G^{\circ} = -nF E^{\circ}$ Electrochemical cell calculations.
van ’t Hoff equation $\ln K = -\dfrac{\Delta H^{\circ}}{R}\dfrac{1}{T} + \dfrac{\Delta S^{\circ}}{R}$ Determine ΔH° and ΔS° from temperature‑dependence of K.
Temperature of spontaneity $T_{\text{eq}} = \dfrac{\Delta H^{\circ}}{\Delta S^{\circ}}$ Find the temperature at which ΔG changes sign.

Create an account or Login to take a Quiz

32 views
0 improvement suggestions

Log in to suggest improvements to this note.