Additional Mathematics – Quadratic functions | e-Consult
Quadratic functions (1 questions)
1. Vertex
For a quadratic \(ax^{2}+bx+c\), the x‑coordinate of the vertex is \(-\dfrac{b}{2a}\).
\(a=-2,\; b=8\) so
\(x_{v}= -\dfrac{8}{2(-2)} = 2\).
Substituting \(x=2\) into \(f(x)\):
\(f(2)= -2(2)^{2}+8(2)-3 = -8+16-3 = 5\).
Thus the vertex is \((2,\;5)\).
2. Maximum or Minimum
Since \(a=-2maximum point.
3. Sketch description
- Vertex: \((2,5)\)
- Axis of symmetry: \(x=2\)
- y‑intercept: set \(x=0\) → \(f(0)=-3\) → point \((0,-3)\)
- x‑intercepts: solve \(-2x^{2}+8x-3=0\) → \(x=\dfrac{8\pm\sqrt{64-24}}{4}= \dfrac{8\pm\sqrt{40}}{4}= \dfrac{8\pm2\sqrt{10}}{4}=2\pm\frac{\sqrt{10}}{2}\).
The graph is a downward‑opening parabola passing through the points above.
4. Range
Because the maximum value is \(5\) and the parabola extends indefinitely downwards, the range is
\(\displaystyle \{\,y\mid y\le 5\,\}\) or \((-\infty,5]\).