Published by Patrick Mutisya · 14 days ago
Describe the motion of a charged particle moving in a uniform magnetic field perpendicular to its velocity, and relate this motion to the magnetic force on a straight current‑carrying conductor.
The Lorentz force on a charge \$q\$ moving with velocity \$\mathbf{v}\$ in a magnetic field \$\mathbf{B}\$ is
\$\$
\mathbf{F}=q\,\mathbf{v}\times\mathbf{B}
\$\$
If \$\mathbf{v}\perp\mathbf{B}\$, the magnitude simplifies to \$F = qvB\$, and the direction is given by the right‑hand rule.
Because the magnetic force is always perpendicular to the velocity, it provides the centripetal force required for circular motion.
\$\$
qvB = \frac{mv^{2}}{r}
\$\$
Hence the radius of the trajectory is
\$\$
r = \frac{mv}{qB}
\$\$
and the angular (cyclotron) frequency is
\$\$
\omega = \frac{v}{r}= \frac{qB}{m}
\$\$
Consider a straight wire of length \$L\$ carrying a current \$I\$ placed in a uniform magnetic field \$\mathbf{B}\$, with the field perpendicular to the wire.
The current is the net charge flow per unit time:
\$\$
I = n q A v
\$\$
where \$n\$ is the number density of charge carriers, \$q\$ the charge of each carrier, \$A\$ the cross‑sectional area, and \$v\$ the drift speed.
The total magnetic force on all carriers in the segment is
\$\$
F = (nqAv)L\,B = I L B
\$\$
The direction of the force follows Fleming’s left‑hand rule (or the right‑hand rule for positive charge flow).
| Quantity | Symbol | Expression |
|---|---|---|
| Magnetic force on a charge | \$\mathbf{F}\$ | \$q\mathbf{v}\times\mathbf{B}\$ |
| Force magnitude ( \$v\perp B\$ ) | \$F\$ | \$qvB\$ |
| Radius of trajectory | \$r\$ | \$\displaystyle\frac{mv}{qB}\$ |
| Cyclotron frequency | \$\omega\$ | \$\displaystyle\frac{qB}{m}\$ |
| Current (drift) | \$I\$ | \$nqAv\$ |
| Force on a straight conductor | \$F\$ | \$ILB\sin\theta\$ (for \$\theta=90^\circ\$, \$F=ILB\$) |
Calculate the radius of a proton (mass \$1.67\times10^{-27}\,\text{kg}\$, charge \$+e\$) moving at \$2.0\times10^{6}\,\text{m s}^{-1}\$ in a \$0.5\,\text{T}\$ magnetic field perpendicular to its velocity.
Using \$r = \dfrac{mv}{qB}\$:
\$\$
r = \frac{(1.67\times10^{-27}\,\text{kg})(2.0\times10^{6}\,\text{m s}^{-1})}{(1.60\times10^{-19}\,\text{C})(0.5\,\text{T})}
\approx 4.2\times10^{-2}\,\text{m}
\$\$
Find the force on a \$0.30\,\$m long wire carrying \$5.0\,\$A placed in the same \$0.5\,\$T field, perpendicular to the wire.
Using \$F = I L B\$:
\$\$
F = (5.0\ \text{A})(0.30\ \text{m})(0.5\ \text{T}) = 0.75\ \text{N}
\$\$