The radian (rad) is the SI unit for plane angles. One radian is the angle subtended at the centre of a circle by an arc whose length equals the radius of the circle.

When the angle θ is measured in radians, the arc length s is given by
\$s = r\,\theta\$
The full circumference corresponds to an angle of 2π rad = 360°. Hence
\$\$1\;\text{rad}= \frac{180^\circ}{\pi}\approx57.3^\circ,\qquad
1^\circ = \frac{\pi}{180}\;\text{rad}\approx0.01745\;\text{rad}\$\$
For any motion along a circular path
\$\Delta\theta = \frac{\Delta s}{r}\$
This formula is valid only when Δθ is expressed in radians.
\$\omega = \frac{\Delta\theta}{\Delta t}\qquad[\text{rad s}^{-1}]\$
\$T = \frac{2\pi}{\omega}\qquad[\text{s}]\$
\$f = \frac{1}{T}= \frac{\omega}{2\pi}\qquad[\text{Hz}]\$
The speed of a point on the rim of a rotating object is linked to ω by
\$v = r\,\omega\qquad[\text{m s}^{-1}]\$
Because v is tangent to the circular path, its direction is always perpendicular to the radius.
Uniform circular motion requires a continual change in the direction of the velocity vector, producing an inward (centripetal) acceleration.
\$a_c = r\,\omega^{2}= \frac{v^{2}}{r}\qquad[\text{m s}^{-2}]\$
Consider two successive velocity vectors separated by a small angle Δθ. The magnitude of each vector is v, but the vector change Δv has magnitude v Δθ. Dividing by the time interval Δt gives
\$a_c = \frac{Δv}{Δt}= \frac{v\,Δθ}{Δt}=v\,\omega = r\,\omega^{2}= \frac{v^{2}}{r}\$
Newton’s second law applied to the centripetal acceleration yields the required inward force
\$Fc = m\,ac = m\,r\,\omega^{2}= \frac{m\,v^{2}}{r}\qquad[\text{N}]\$
A wheel of radius r = 0.40 m makes 15 revolutions in 6 s. Find ω, T, f and the linear speed of a point on the rim.
Solution:
\$\Delta\theta = 15\times2\pi = 30\pi\;\text{rad}\$
\$\omega = \frac{30\pi}{6}=5\pi\;\text{rad s}^{-1}\approx15.7\;\text{rad s}^{-1}\$
\$T = \frac{2\pi}{\omega}= \frac{2\pi}{5\pi}=0.40\;\text{s}\$
\$f = \frac{1}{T}=2.5\;\text{Hz}\$
\$v = r\omega =0.40\times5\pi\approx6.28\;\text{m s}^{-1}\$
A car of mass m = 800 kg travels around a curve of radius r = 50 m banked at an angle β = 30°. The road is frictionless. Determine the speed for which the car can negotiate the curve without relying on friction.
Solution (using forces resolved perpendicular and parallel to the bank):
\$\$\tan\beta = \frac{v^{2}}{r\,g}\;\;\Longrightarrow\;\;v = \sqrt{r\,g\,\tan\beta}
= \sqrt{50\times9.8\times\tan30^{\circ}}
\approx 19.6\;\text{m s}^{-1}\$\$
The required centripetal force is supplied entirely by the horizontal component of the normal reaction.
A satellite of mass m = 500 kg orbits Earth at an altitude where the orbital radius is r = 7.0×10⁶ m. Find the orbital speed and the magnitude of the gravitational (centripetal) force.
Solution (equating gravitational force to m v²/r):
\$\$\frac{G M_{\earth} m}{r^{2}} = \frac{m v^{2}}{r}
\;\Longrightarrow\; v = \sqrt{\frac{G M_{\earth}}{r}}
\approx 7.5\times10^{3}\;\text{m s}^{-1}\$\$
\$F_c = \frac{m v^{2}}{r} \approx 2.7\times10^{4}\;\text{N}\$
Here gravity provides the required centripetal force.
| Angle (°) | Angle (rad) |
|---|---|
| 0° | 0 |
| 30° | \(\frac{\pi}{6}\) |
| 45° | \(\frac{\pi}{4}\) |
| 60° | \(\frac{\pi}{3}\) |
| 90° | \(\frac{\pi}{2}\) |
| 120° | \(\frac{2\pi}{3}\) |
| 180° | \(\pi\) |
| 270° | \(\frac{3\pi}{2}\) |
| 360° | \(2\pi\) |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.