Published by Patrick Mutisya · 14 days ago
Describe the interchange between kinetic and potential energy during simple harmonic motion (SHM).
\$x(t)=A\cos(\omega t+\phi)\$
where \$A\$ is amplitude, \$\omega=\sqrt{k/m}\$ is angular frequency, and \$\phi\$ is the phase constant.
\$v(t)=\frac{dx}{dt}=-A\omega\sin(\omega t+\phi),\$
\$a(t)=\frac{dv}{dt}=-\omega^{2}x(t).\$
The total mechanical energy \$E\$ of an ideal SHM system is the sum of kinetic energy \$Ek\$ and elastic potential energy \$Ep\$:
\$E = Ek + Ep = \frac12 m v^{2} + \frac12 k x^{2}.\$
Because \$k = m\omega^{2}\$, the expression can be rewritten as
\$E = \frac12 m\omega^{2}\bigl(A^{2}\bigr) = \frac12 k A^{2},\$
which shows that the total energy is constant and depends only on the amplitude \$A\$.
| Position \$x\$ | Velocity \$v\$ | Kinetic Energy \$E_k\$ | Potential Energy \$E_p\$ | Energy State |
|---|---|---|---|---|
| \$x = 0\$ (equilibrium) | \$\pm A\omega\$ (maximum) | \$\frac12 m (A\omega)^{2} = \frac12 k A^{2}\$ (maximum) | \$0\$ (minimum) | All energy is kinetic. |
| \$x = \pm\frac{A}{\sqrt{2}}\$ | \$\pm\frac{A\omega}{\sqrt{2}}\$ | \$\frac14 k A^{2}\$ | \$\frac14 k A^{2}\$ | Energy equally split between kinetic and potential. |
| \$x = \pm A\$ (extrema) | \$0\$ (minimum) | \$0\$ (minimum) | \$\frac12 k A^{2}\$ (maximum) | All energy is potential. |
Starting from the displacement equation, substitute \$v = \dot{x}\$ into the kinetic energy term:
\$\$E_k = \frac12 m\bigl(\dot{x}\bigr)^{2}
= \frac12 m\bigl(-A\omega\sin(\omega t+\phi)\bigr)^{2}
= \frac12 mA^{2}\omega^{2}\sin^{2}(\omega t+\phi).\$\$
The potential energy is
\$\$E_p = \frac12 k x^{2}
= \frac12 k\bigl(A\cos(\omega t+\phi)\bigr)^{2}
= \frac12 m\omega^{2}A^{2}\cos^{2}(\omega t+\phi).\$\$
Adding the two gives
\$\$E = \frac12 m\omega^{2}A^{2}\bigl(\sin^{2}(\omega t+\phi)+\cos^{2}(\omega t+\phi)\bigr)
= \frac12 m\omega^{2}A^{2}
= \frac12 k A^{2},\$\$
which is independent of time, confirming that energy is conserved and merely interchanges between kinetic and potential forms.