To derive, understand and apply Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL) for analysing simple DC circuits, including series‑parallel networks, the potential‑divider principle and the effect of internal resistance of a cell. The notes are written to meet the requirements of Cambridge IGCSE 9702 AS & A‑Level Physics (DC‑circuit section).
\[
\sum{k=1}^{n} Ik =0\qquad\text{(in = out)}
\]
\[
\sum{k=1}^{m} Vk =0
\]
| Symbol | Component |
|---|---|
| ⚡ | Ideal battery (EMF 𝓔, no internal resistance) |
| ⎓ | Battery with internal resistance r (draw r inside the cell) |
| ⟞ | Resistor (R) |
| A | Ammeter (connected in series, low resistance) |
| V | Voltmeter (connected in parallel, high resistance) |
| ⏚ | Switch (open/closed) |
| ∘ | Node (junction of three or more conductors) |
When resistors are end‑to‑end the same current I flows through each.
\[
\mathcal{E}=I(R1+R2+\dots)=I\,R{\text{eq}}\quad\Longrightarrow\quad R{\text{eq}}=R1+R2+\dots
\]
All branches share the same voltage V.
\[
I=\frac{V}{R1}+\frac{V}{R2}+\dots=V\!\left(\frac1{R1}+\frac1{R2}+\dots\right)
\]
\[
\Longrightarrow\qquad\frac1{R{\text{eq}}}= \frac1{R1}+\frac1{R_2}+\dots
\]
\[
V{\text{t}}=\mathcal{E}-Ir\qquad(\text{ideal source: }r=0\Rightarrow V{\text{t}}=\mathcal{E})
\]
\[
V{R2}=V{\text{total}}\;\frac{R2}{R1+R2},\qquad
V{R1}=V{\text{total}}\;\frac{R1}{R1+R2}
\]
Problem: A 12 V ideal battery supplies three resistors: \(R1=2\;\Omega\) and \(R2=3\;\Omega\) in parallel, the combination in series with \(R_3=4\;\Omega\). Find the current through each resistor.
\[
\frac1{R{12}}=\frac1{2}+\frac1{3}=\frac56\;\Longrightarrow\;R{12}=1.20\;\Omega
\]
\[
R{\text{eq}}=R{12}+R_3=1.20+4.00=5.20\;\Omega
\]
\[
I=\frac{12}{5.20}=2.31\;\text{A}
\]
\[
V{p}=I\,R3=2.31\times4.00=9.23\;\text{V}
\]
\[
V_{\text{parallel}}=12-9.23=2.77\;\text{V}
\]
\[
I1=\frac{V{\text{parallel}}}{R_1}= \frac{2.77}{2}=1.38\;\text{A}
\]
\[
I2=\frac{V{\text{parallel}}}{R_2}= \frac{2.77}{3}=0.92\;\text{A}
\]
(Check: \(I1+I2=2.31\;\text{A}=I\).)
Problem: Solve the circuit of Example A using KCL and KVL.
\[
I = I1 + I2 \tag{1}
\]
\[
12 - I R3 - I1 R1 =0 \;\Longrightarrow\; 12 -4I -2I1 =0 \tag{2}
\]
\[
12 - I R3 - I2 R2 =0 \;\Longrightarrow\; 12 -4I -3I2 =0 \tag{3}
\]
\[
I1 = 6 -2I,\qquad I2 = 4 -\frac{4}{3}I
\]
\[
I = (6-2I) + \Bigl(4-\frac{4}{3}I\Bigr)
\;\Longrightarrow\; \frac{13}{3}I =10
\;\Longrightarrow\; I = 2.31\;\text{A}
\]
\[
I_1 = 6-2I = 6-4.62 = 1.38\;\text{A}
\]
\[
I_2 = 4-\frac{4}{3}I = 4-3.08 = 0.92\;\text{A}
\]
Problem: A 12 V ideal battery is connected to a Δ network of three resistors: \(R1=3\;\Omega\) (AB), \(R2=6\;\Omega\) (BC), \(R3=2\;\Omega\) (CA). Assign clockwise currents \(I1\) (AB), \(I2\) (BC), \(I3\) (CA). Find all three currents using KVL.
Loop 1 (AB‑BC‑CA):
-I₁R₁ - I₂R₂ + I₃R₃ = 0 (4)
Loop 2 (Battery‑AB‑CA):
+12 - I₁R₁ - I₃R₃ = 0 (5)
Loop 3 (Battery‑BC‑CA):
+12 - I₂R₂ - I₃R₃ = 0 (6)
(4) -3I₁ - 6I₂ + 2I₃ = 0
(5) 12 - 3I₁ - 2I₃ = 0 → 3I₁ + 2I₃ = 12
(6) 12 - 6I₂ - 2I₃ = 0 → 6I₂ + 2I₃ = 12
\[
I₁ = \frac{12-2I₃}{3}
\]
Solve (6) for \(I₂\):
\[
I₂ = \frac{12-2I₃}{6}= \frac{12-2I₃}{6}
\]
\[
-3\!\left(\frac{12-2I₃}{3}\right) -6\!\left(\frac{12-2I₃}{6}\right) +2I₃ =0
\]
Simplifies to:
\[
-(12-2I₃) -(12-2I₃) +2I₃ =0\;\Longrightarrow\; -24+4I₃+2I₃=0
\]
\[
6I₃ = 24\;\Longrightarrow\; I₃ = 4\;\text{A}
\]
\[
I₁ = \frac{12-2(4)}{3}= \frac{4}{3}=1.33\;\text{A}
\]
\[
I₂ = \frac{12-2(4)}{6}= \frac{2}{3}=0.67\;\text{A}
\]
Negative values would indicate opposite direction; here all are positive, so the assumed directions are correct.
| Symbol | Quantity | Unit |
|---|---|---|
| I | Current | A (ampere) |
| V | Potential difference (voltage) | V (volt) |
| R | Resistance | Ω (ohm) |
| \(\mathcal{E}\) | Electromotive force (EMF) | V |
| r | Internal resistance of a source | Ω |
| V_{\text{t}} | Terminal potential difference | V |
A 9 V battery has internal resistance \(r=1\;\Omega\). It supplies two external resistors \(R1=5\;\Omega\) and \(R2=10\;\Omega\) in series, and a third resistor \(R3=15\;\Omega\) is placed in parallel with \(R2\). Determine:
A 6 V battery (internal resistance \(r=0.5\;\Omega\)) drives a series pair \(RA=2\;\Omega\) and \(RB=4\;\Omega\). This series pair is in parallel with \(R_C=6\;\Omega\). Find the voltage across each resistor.
For the Δ circuit of Example C, write the three independent KVL equations (do not solve). Indicate clearly the sign you assign to each voltage drop.
In a series circuit \(R1=8\;\Omega\), \(R2=12\;\Omega\) are connected across a 15 V ideal battery. Calculate the voltage across \(R_2\) using the potential‑divider formula and verify by a direct KVL sum.
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.