Published by Patrick Mutisya · 14 days ago
By the end of this lesson you should be able to:
The mass of a nucleus is always slightly less than the sum of the masses of its constituent protons and neutrons. This difference is called the mass defect (\$\Delta m\$):
\$\Delta m = \left(Zmp + Nmn\right) - m_{\text{nucleus}}\$
where \$Z\$ is the number of protons, \$N\$ the number of neutrons, \$mp\$ the mass of a proton and \$mn\$ the mass of a neutron.
Einstein’s mass‑energy equivalence relates the mass defect to the energy required to separate the nucleus into its constituent nucleons:
\$E_{\text{b}} = \Delta m\,c^{2}\$
In practice we use the conversion factor \$1\;\text{u} = 931.5\;\text{MeV}/c^{2}\$, so the binding energy in mega‑electron‑volts is
\$E_{\text{b}}(\text{MeV}) = \Delta m(\text{u}) \times 931.5\$
The average binding energy per nucleon is a useful indicator of nuclear stability:
\$\frac{E{\text{b}}}{A} = \frac{E{\text{b}}}{Z+N}\$
Plotting \$\frac{E_{\text{b}}}{A}\$ against mass number \$A\$ yields the familiar “binding‑energy curve”. Nuclei around \$A\approx 56\$ (e.g. \$^{56}\text{Fe}\$) have the highest values, indicating maximal stability.
A nuclear reaction is written in the form
\$\prescript{A}{Z}{\text{X}} + \prescript{a}{z}{\text{y}} \;\rightarrow\; \prescript{A'}{Z'}{\text{X'}} + \prescript{b}{b}{\text{z}}\$
where the superscript denotes the mass number and the subscript the atomic number.
Examples:
\$\prescript{238}{92}{\text{U}} \;\rightarrow\; \prescript{234}{90}{\text{Th}} + \prescript{4}{2}{\alpha}\$
\$\prescript{14}{6}{\text{C}} \;\rightarrow\; \prescript{14}{7}{\text{N}} + \prescript{0}{-1}{\beta} + \bar{\nu}_e\$
\$\prescript{2}{1}{\text{H}} + \prescript{3}{1}{\text{H}} \;\rightarrow\; \prescript{4}{2}{\text{He}} + \prescript{1}{0}{\text{n}}\$
\$m{\text{total}} = 2mp + 2m_n = 2(1.007276) + 2(1.008665) = 4.031882\;\text{u}\$
\$\Delta m = m{\text{total}} - m{\alpha} = 4.031882 - 4.002603 = 0.029279\;\text{u}\$
\$E_{\text{b}} = 0.029279 \times 931.5 = 27.2\;\text{MeV}\$
\$\frac{E_{\text{b}}}{A} = \frac{27.2}{4} = 6.8\;\text{MeV/nucleon}\$
| Nucleus | Mass Number \$A\$ | Binding Energy \$E_{\text{b}}\$ (MeV) | Binding Energy per Nucleon (MeV) |
|---|---|---|---|
| \$^{2}\text{H}\$ (Deuterium) | 2 | 2.22 | 1.11 |
| \$^{4}\text{He}\$ (Alpha particle) | 4 | 28.30 | 7.07 |
| \$^{12}\text{C}\$ | 12 | 92.2 | 7.68 |
| \$^{56}\text{Fe}\$ | 56 | 492.3 | 8.80 |
| \$^{238}\text{U}\$ | 238 | 1786 | 7.50 |
The mass defect quantifies the loss of mass when nucleons bind together, and via \$E=mc^{2}\$ it gives the nuclear binding energy. Binding energy per nucleon provides a clear measure of nuclear stability, explaining why heavy nuclei release energy by fission and light nuclei by fusion. Mastery of nuclear notation allows clear communication of these processes.