Key experiment (1911): A thin gold foil was bombarded with high‑energy α‑particles. Most particles passed through with little deflection, but a few were scattered at large angles or even reflected straight back.
Conclusion: The atom contains a tiny, massive, positively‑charged centre – the nucleus – surrounded by a cloud of electrons. The size of the nucleus is ≈10⁻¹⁵ m, much smaller than the atomic radius (≈10⁻¹⁰ m).

A neutral atom consists of:
The total number of nucleons is the nucleon number (also called the mass number, A):
\[
A = Z + N
\]
In Cambridge terminology “mass number” and “nucleon number” are interchangeable, but the symbol A always represents the total number of nucleons.
The mass of a bound nucleus is slightly less than the sum of the masses of its constituent free nucleons. This shortfall is the mass defect (Δm):
\[
\Delta m = \bigl(Z\,mp + N\,mn\bigr) - m_{\text{nucleus}}
\]
Einstein’s relation \$E=mc^{2}\$ links the mass defect to the energy required to separate the nucleus into its nucleons:
\[
E_{\text{b}} = \Delta m\,c^{2}
\]
Using the convenient conversion
\[
1\;\text{u} = 931.5\;\text{MeV}\,c^{-2}
\]
the binding energy (in MeV) is
\[
E_{\text{b}}(\text{MeV}) = \Delta m(\text{u}) \times 931.5
\]
\[
\frac{E{\text{b}}}{A} = \frac{E{\text{b}}}{Z+N}
\]

A nucleus is written as
\[
\prescript{A}{Z}{\text{X}}
\]
In any nuclear reaction both \$A\$ and \$Z\$ must be conserved:
\[
\prescript{A}{Z}{\text{X}} + \prescript{a}{z}{\text{y}} \;\rightarrow\; \prescript{A'}{Z'}{\text{X'}} + \prescript{b}{b}{\text{z}}
\]
| Process | Example equation | Change in \$A\$ and \$Z\$ |
|---|---|---|
| Alpha (α) decay | \$\prescript{238}{92}{\text{U}} \;\rightarrow\; \prescript{234}{90}{\text{Th}} + \prescript{4}{2}{\alpha}\$ | \$\Delta A=-4,\;\Delta Z=-2\$ |
| Beta‑minus (β⁻) decay | \$\prescript{14}{6}{\text{C}} \;\rightarrow\; \prescript{14}{7}{\text{N}} + \prescript{0}{-1}{\beta} + \bar{\nu}_e\$ | \$\Delta A=0,\;\Delta Z=+1\$ |
| Beta‑plus (β⁺) decay (positron emission) | \$\prescript{11}{6}{\text{C}} \;\rightarrow\; \prescript{11}{5}{\text{B}} + \prescript{0}{+1}{\beta} + \nu_e\$ | \$\Delta A=0,\;\Delta Z=-1\$ |
| Electron capture (EC) | \$\prescript{7}{4}{\text{Be}} + e^{-} \;\rightarrow\; \prescript{7}{3}{\text{Li}} + \nu_e\$ | \$\Delta A=0,\;\Delta Z=-1\$ |
| Gamma (γ) emission | \$\prescript{60}{27}{\text{Co}}^{*} \;\rightarrow\; \prescript{60}{27}{\text{Co}} + \gamma\$ | No change in \$A\$ or \$Z\$ (energy only) |
\[
\prescript{2}{1}{\text{H}} + \prescript{3}{1}{\text{H}} \;\rightarrow\; \prescript{4}{2}{\text{He}} + \prescript{1}{0}{\text{n}}
\]
\[
\prescript{235}{92}{\text{U}} + \prescript{1}{0}{\text{n}} \;\rightarrow\; \prescript{141}{56}{\text{Ba}} + \prescript{92}{36}{\text{Kr}} + 3\,\prescript{1}{0}{\text{n}}
\]
The net energy change of a nuclear reaction is the Q‑value:
\[
Q = \bigl(m{\text{reactants}} - m{\text{products}}\bigr)c^{2}
= \bigl(m{\text{reactants}} - m{\text{products}}\bigr)\times 931.5\;\text{MeV}
\]
\[
m{\text{total}} = 2m{p}+2m_{n}=2(1.007276)+2(1.008665)=4.031882\;\text{u}
\]
\[
\Delta m = m{\text{total}}-m{\alpha}=4.031882-4.002603=0.029279\;\text{u}
\]
\[
E_{\text{b}} = 0.029279\times931.5 = 27.2\;\text{MeV}
\]
\[
\frac{E_{\text{b}}}{A}= \frac{27.2}{4}=6.8\;\text{MeV nucleon}^{-1}
\]
| Nucleus | Mass Number \$A\$ | Binding Energy \$E_{\text{b}}\$ (MeV) | Binding Energy per Nucleon (MeV) |
|---|---|---|---|
| \$^{2}\text{H}\$ (Deuterium) | 2 | 2.22 | 1.11 |
| \$^{4}\text{He}\$ (Alpha particle) | 4 | 28.30 | 7.07 |
| \$^{12}\text{C}\$ | 12 | 92.2 | 7.68 |
| \$^{56}\text{Fe}\$ | 56 | 492.3 | 8.80 |
| \$^{238}\text{U}\$ | 238 | 1786 | 7.50 |
Given \$m{p}=1.007276\;\text{u}\$, \$m{n}=1.008665\;\text{u}\$, \$m{^{12}\text{C}}=12.000000\;\text{u}\$, calculate Δm, \$E{\text{b}}\$, and \$E_{\text{b}}/A\$.
Write the nuclear equation.
\[
\prescript{2}{1}{\text{H}} + \prescript{2}{1}{\text{H}} \rightarrow \prescript{3}{2}{\text{He}} + \prescript{1}{0}{\text{n}}
\]
Use \$m{^{2}\text{H}}=2.014102\;\text{u}\$, \$m{^{3}\text{He}}=3.016029\;\text{u}\$, \$m_{n}=1.008665\;\text{u}\$. State whether the reaction is exothermic.
The mass defect quantifies the loss of mass when nucleons bind together. Converting this loss to energy via \$E=mc^{2}\$ yields the nuclear binding energy, a direct measure of nuclear stability. The binding‑energy‑per‑nucleon curve peaks near \$^{56}\text{Fe}\$, explaining why light nuclei release energy by fusion and heavy nuclei by fission. Mastery of nuclear notation, the conservation of nucleon number (A) and proton number (Z), and Q‑value calculations enables clear description and quantitative analysis of all nuclear reactions required by the Cambridge A‑Level syllabus.
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.