To define electric potential at a point as the work done per unit positive test charge in moving the charge from a chosen reference point (usually infinity) to that point, and to develop the connections required by Cambridge International AS & A‑Level Physics (9702) – 18.5, 19.1‑19.3.
\$V(P)=\frac{W_{\text{ref}\rightarrow P}}{q}\,,\$
where \$W_{\text{ref}\rightarrow P}\$ is the work required to bring a small positive test charge \$q\$ from the reference point to \$P\$.
\$dV=-\mathbf{E}\!\cdot\!d\mathbf{s}\,.\$
\$\Delta V{AB}=VB-VA=-\int{A}^{B}\mathbf{E}\!\cdot\!d\mathbf{s}\,.\$
The integral is path‑independent; only the end points matter.
\$\Delta V = -E\,\Delta x \qquad\text{or}\qquad V(x)=V_0-Ex.\$
\$\mathbf{E}=\frac{1}{4\pi\varepsilon_0}\frac{Q}{r^{2}}\hat{r}.\$
\$V(r)=\frac{1}{4\pi\varepsilon_0}\frac{Q}{r}=k\frac{Q}{r}.\$
\$V{\text{surface}}=\frac{1}{4\pi\varepsilon0}\frac{Q}{R}=k\frac{Q}{R}.\$
\$V=\frac{Q}{C}.\$
\$U_{\text{cap}}=\frac{1}{2}CV^{2}=\frac{Q^{2}}{2C}.\$
\$V(\mathbf{r})\approx\frac{1}{4\pi\varepsilon_0}\frac{\mathbf{p}\!\cdot\!\hat{r}}{r^{2}},\qquad\mathbf{p}=q\mathbf{d}\$
where \$\mathbf{p}\$ is the dipole moment.
Because potential is a scalar, the total potential at a point due to several point charges \$Q_i\$ is the algebraic sum of the individual contributions:
\$V{\text{total}}(P)=\sum{i}\frac{1}{4\pi\varepsilon0}\frac{Qi}{r_i}\,,\$
where \$r_i\$ is the distance from \$P\$ to the \$i^{\text{th}}\$ charge. This follows directly from the linearity of the integral in Section 2.
For two series resistors \$R1\$ and \$R2\$ across a battery of emf \$V{\text{in}}\$, the voltage across \$R2\$ is
\$V{\text{out}}=V{\text{in}}\frac{R2}{R1+R_2}\,,\$
a result that is frequently required in Paper 10.3 circuit questions. The same reasoning applies to any series network of impedances (A‑Level extension).
The electric potential energy \$U\$ of a charge \$q\$ placed at a point of potential \$V\$ is
\$U = qV\,.\$
Consequences:
Find \$V\$ at \$r=0.10\,\$m from a charge \$Q=+5\;\mu\text{C}\$.
\$\$V = k\frac{Q}{r}
= \frac{9.0\times10^{9}\,\text{N m}^2\!\!/\!\text{C}^2 \times 5\times10^{-6}\,\text{C}}{0.10\;\text{m}}
= 4.5\times10^{5}\ \text{V}.\$\$
Two equal charges \$+2\;\mu\text{C}\$ at \$(0,0)\$ and \$(0,0.20\,\$m\$)\$. Potential at the midpoint \$(0,0.10\,\$m\$)\$:
\$\$V = k\frac{Q}{r1}+k\frac{Q}{r2}
= \frac{9.0\times10^{9}\times2\times10^{-6}}{0.10}
+\frac{9.0\times10^{9}\times2\times10^{-6}}{0.10}
= 3.6\times10^{5}\ \text{V}.\$\$
A uniform field of magnitude \$E=500\;\text{V m}^{-1}\$ exists between two parallel plates 0.04 m apart. The potential difference is
\$\Delta V = E d = 500 \times 0.04 = 20\ \text{V}.\$
A parallel‑plate capacitor of capacitance \$C=10\;\mu\text{F}\$ stores a charge \$Q=2\;\text{mC}\$. Find the voltage across the plates and the stored energy.
\$V = \frac{Q}{C}= \frac{2\times10^{-3}}{10\times10^{-6}} = 200\ \text{V},\$
\$U = \frac{1}{2}CV^{2}= \frac{1}{2}\times10\times10^{-6}\times(200)^{2}=0.20\ \text{J}.\$
| Symbol | Quantity | Unit | Typical meaning |
|---|---|---|---|
| \$V\$ | Electric potential | Volt (V) | Work per unit charge |
| \$\Delta V\$ | Potential difference (voltage) | Volt (V) | \$VB-VA\$ |
| \$W\$ | Work / Energy | Joule (J) | Energy transferred |
| \$q\$ | Test charge | Coulomb (C) | Small positive charge |
| \$\mathbf{E}\$ | Electric field | Volt per metre (V m⁻¹) | Force per unit charge |
| \$\varepsilon_0\$ | Permittivity of free space | F m⁻¹ | \$8.85\times10^{-12}\ \text{F m}^{-1}\$ |
| \$k\$ | Coulomb constant | N m² C⁻² | \$k=1/4\pi\varepsilon_0=9.0\times10^{9}\$ |
| \$C\$ | Capacitance | Farad (F) | \$C=Q/V\$ |
| \$\mathbf{p}\$ | Dipole moment | C m | \$\mathbf{p}=q\mathbf{d}\$ |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.