Recall the fundamental photon relations and use them to calculate photon energy, momentum and related quantities in a range of contexts.
Quick‑check:
E = hf \qquad\text{with } h = 6.626\times10^{-34}\ \text{J·s}
\]
E = \frac{hc}{\lambda}
\]
p = \frac{E}{c}= \frac{h}{\lambda}= \frac{hf}{c}
\]
| Constant | Symbol | Value | Units |
|---|---|---|---|
| Planck constant | \(h\) | 6.626 × 10⁻³⁴ | J·s |
| Speed of light in vacuum | \(c\) | 2.998 × 10⁸ | m·s⁻¹ |
| Elementary charge | \(e\) | 1.602 × 10⁻¹⁹ | C |
| Electron rest mass | \(m_e\) | 9.109 × 10⁻³¹ | kg |
| Radiation type | Wavelength \(\lambda\) (nm) | Frequency \(f\) (THz) | Energy \(E\) (eV) |
|---|---|---|---|
| Radio (AM) | ≈ 10⁶ | ≈ 0.3 | ≈ 1.2 × 10⁻⁶ |
| Microwave (2.45 GHz) | ≈ 122 000 | 2.45 | ≈ 1.0 × 10⁻⁵ |
| Infrared (10 µm) | 10 000 | 30 | ≈ 0.124 |
| Visible (green, 550 nm) | 550 | 545 | ≈ 2.25 |
| Ultraviolet (200 nm) | 200 | 1500 | ≈ 6.20 |
| X‑ray (0.1 nm) | 0.1 | 3 × 10⁶ | ≈ 12.4 × 10³ |
| Gamma (0.01 nm) | 0.01 | 3 × 10⁷ | ≈ 124 × 10³ |
Starting from the energy–frequency relation and the wave‑speed definition:
\[
E = hf,\qquad c = \lambda f
\]
Eliminate \(f\) to obtain the wavelength form of the energy:
\[
E = h\frac{c}{\lambda}= \frac{hc}{\lambda}
\]
For a particle with zero rest mass the relativistic relation \(E = pc\) holds, giving
\[
p = \frac{E}{c}= \frac{h}{\lambda}= \frac{hf}{c}
\]
K_{\max}=hf-\phi
\]
f_{\text{thr}}=\frac{\phi}{h}
\]
The change in photon wavelength after scattering from a free electron is
\[
\Delta\lambda = \frac{h}{m_ec}(1-\cos\theta)
\]
derived from conservation of energy (\(hf\)) and momentum (\(h/\lambda\)).
Any particle of momentum \(p\) has an associated wavelength
\[
\lambda_{\text{dB}} = \frac{h}{p}
\]
For a non‑relativistic particle with kinetic energy \(K\), \(p = \sqrt{2mK}\) and
\[
\lambda_{\text{dB}} = \frac{h}{\sqrt{2mK}}
\]
Example: an electron with \(K = 100\ \text{eV}\) has
\[
\lambda_{\text{dB}} = \frac{6.626\times10^{-34}}{\sqrt{2(9.109\times10^{-31})(100\times1.602\times10^{-19})}}
\approx 1.23\times10^{-10}\ \text{m} \;(0.123\ \text{nm})
\]
hf = |E1-E2|
\]
\Delta E = \frac{hc}{\lambda}= \frac{(6.626\times10^{-34})(2.998\times10^{8})}{656.3\times10^{-9}}
\approx 3.03\times10^{-19}\ \text{J}=1.89\ \text{eV}
\]
\[
E = \frac{hc}{\lambda}= \frac{(6.626\times10^{-34})(2.998\times10^{8})}{550\times10^{-9}}
= 3.61\times10^{-19}\ \text{J}=2.25\ \text{eV}
\]
\[
p = \frac{h}{\lambda}= \frac{6.626\times10^{-34}}{0.1\times10^{-9}}
= 6.63\times10^{-24}\ \text{kg·m·s}^{-1}
\]
\[
F = \frac{P}{c}= \frac{5}{2.998\times10^{8}}
= 1.67\times10^{-8}\ \text{N}
\]
\[
F = \frac{2P}{c}= 3.34\times10^{-8}\ \text{N}
\]
\[
f_{\text{thr}} = \frac{\phi}{h}= \frac{2.0\times1.602\times10^{-19}}{6.626\times10^{-34}}
= 4.8\times10^{14}\ \text{Hz}
\]
\[
f = \frac{c}{\lambda}= \frac{2.998\times10^{8}}{250\times10^{-9}}=1.20\times10^{15}\ \text{Hz}
\]
\[
K_{\max}=hf-\phi = (6.626\times10^{-34})(1.20\times10^{15})-1.5\,\text{eV}
= 4.96\times10^{-19}\ \text{J}-1.5\,\text{eV}=2.6\ \text{eV}
\]
\[
\Delta\lambda = \frac{h}{m_ec}(1-\cos60^{\circ})
= 2.43\times10^{-12}\,(1-0.5)=1.22\times10^{-12}\ \text{m}
\]
\[
\lambda' = 0.071\ \text{nm}+0.00122\ \text{nm}=0.0722\ \text{nm}
\]
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.