Published by Patrick Mutisya · 14 days ago
Recall and use the relation \$E = hf\$ to calculate the energy of a photon, and apply the associated momentum formula \$p = \dfrac{E}{c} = \dfrac{h}{\lambda}\$ in a variety of contexts.
\$E = hf\$
where \$h = 6.626\times10^{-34}\ \text{J·s}\$ (Planck constant) and \$f\$ is the frequency.
\$E = \frac{hc}{\lambda}\$
\$p = \frac{E}{c} = \frac{h}{\lambda} = \frac{hf}{c}\$
| Constant | Symbol | Value | Units |
|---|---|---|---|
| Planck constant | \$h\$ | 6.626 × 10⁻³⁴ | J·s |
| Speed of light in vacuum | \$c\$ | 2.998 × 10⁸ | m·s⁻¹ |
| Elementary charge | \$e\$ | 1.602 × 10⁻¹⁹ | C |
| Radiation Type | Wavelength \$\lambda\$ (nm) | Frequency \$f\$ (THz) | Energy \$E\$ (eV) |
|---|---|---|---|
| Radio (AM) | ≈ 10⁶ | ≈ 0.3 | ≈ 1.2 × 10⁻⁶ |
| Microwave (2.45 GHz) | ≈ 122 mm | 2.45 | ≈ 1.0 × 10⁻⁵ |
| Infrared (10 µm) | 10 000 | 30 | ≈ 0.124 |
| Visible (green, 550 nm) | 550 | 545 | ≈ 2.25 |
| Ultraviolet (200 nm) | 200 | 1500 | ≈ 6.20 |
| X‑ray (0.1 nm) | 0.1 | 3 × 10⁶ | ≈ 12.4 × 10³ |
| Gamma (0.01 nm) | 0.01 | 3 × 10⁷ | ≈ 124 × 10³ |
Starting from the energy–frequency relation and the definition of wave speed:
\$E = hf,\qquad c = \lambda f\$
Eliminate \$f\$:
\$E = h\frac{c}{\lambda} = \frac{hc}{\lambda}\$
Since momentum \$p\$ for a massless particle satisfies \$E = pc\$, we obtain:
\$p = \frac{E}{c} = \frac{h}{\lambda} = \frac{hf}{c}\$
Energy of a green photon
A photon has a wavelength of \$550\ \text{nm}\$. Find its energy in joules and electron‑volts.
Solution:
\$E = \frac{hc}{\lambda} = \frac{(6.626\times10^{-34})(2.998\times10^{8})}{550\times10^{-9}} \approx 3.61\times10^{-19}\ \text{J}\$
Convert to e \cdot using \$1\ \text{eV}=1.602\times10^{-19}\ \text{J}\$:
\$E \approx \frac{3.61\times10^{-19}}{1.602\times10^{-19}} \approx 2.25\ \text{eV}\$
Momentum of an X‑ray photon
An X‑ray has a wavelength of \$0.1\ \text{nm}\$. Determine its momentum.
Solution:
\$p = \frac{h}{\lambda} = \frac{6.626\times10^{-34}}{0.1\times10^{-9}} = 6.63\times10^{-24}\ \text{kg·m·s}^{-1}\$
Radiation pressure on a perfectly absorbing surface
A laser beam of power \$5\ \text{W}\$ strikes a black surface perpendicularly. Find the force exerted by the photon momentum.
Solution:
For a completely absorbing surface, \$F = \dfrac{P}{c}\$ where \$P\$ is the power.
\$F = \frac{5}{2.998\times10^{8}} \approx 1.67\times10^{-8}\ \text{N}\$