Express all derived units required by the Cambridge IGCSE/A‑Level Physics syllabus (9702) as products or quotients of the seven SI base units, and apply these units correctly to the physical quantities listed in the syllabus.
| Quantity | Symbol | SI base unit (name) | Definition (concise) |
|---|---|---|---|
| Length | m | metre | Distance travelled by light in vacuum in \$1/299\,792\,458\$ s |
| Mass | kg | kilogram | Mass of the International Prototype of the Kilogram |
| Time | s | second | Duration of \$9\,192\,631\,770\$ periods of the radiation from the ground‑state hyperfine transition of \$^{133}\$Cs |
| Electric current | A | ampere | Current that produces a force of \$2\times10^{-7}\$ N per metre of length between two parallel conductors 1 m apart |
| Thermodynamic temperature | K | kelvin | 1/273.16 of the thermodynamic temperature of the triple‑point of water |
| Amount of substance | mol | mole | Amount of substance containing as many elementary entities as there are atoms in 0.012 kg of \$^{12}\$C |
| Luminous intensity | cd | candela | Intensity of a source that emits monochromatic radiation of frequency \$540\times10^{12}\$ Hz and has a radiant intensity of \$1/683\$ W·sr⁻¹ |
| Prefix | Symbol | Factor | Example |
|---|---|---|---|
| giga | G | 109 | 1 GW = \$10^{9}\$ W |
| mega | M | 106 | 1 MJ = \$10^{6}\$ J |
| kilo | k | 103 | 1 km = \$10^{3}\$ m |
| centi | c | 10‑2 | 1 cm = \$10^{-2}\$ m |
| milli | m | 10‑3 | 1 ms = \$10^{-3}\$ s |
| micro | µ | 10‑6 | 1 µF = \$10^{-6}\$ F |
| nano | n | 10‑9 | 1 nA = \$10^{-9}\$ A |
| pico | p | 10‑12 | 1 pJ = \$10^{-12}\$ J |
\$\mathbf{A}=Ax\hat{\mathbf{i}}+Ay\hat{\mathbf{j}}+A_z\hat{\mathbf{k}}\$
where \$\hat{\mathbf{i}},\hat{\mathbf{j}},\hat{\mathbf{k}}\$ are the unit vectors along the \$x\$, \$y\$, \$z\$ axes.
Every physical equation must be dimensionally homogeneous: the dimensions (or units) on the left‑hand side (LHS) must match those on the right‑hand side (RHS). This is a compulsory check in the exam.
\$\%\,\Delta Q = \frac{\Delta Q}{|Q|}\times100\$
\$\frac{\Delta Q}{|Q|}\approx\frac{\Delta a}{|a|}+\frac{\Delta b}{|b|}+\dots\$
where \$Q=a\,b\$ or \$Q=a/b\$.
| Syllabus Quantity | Symbol | Derived unit (name) | Base‑unit expression |
|---|---|---|---|
| Speed, velocity | \$v\$ | metre per second (m s⁻¹) | m·s‑1 |
| Acceleration | \$a\$ | metre per second squared (m s⁻²) | m·s‑2 |
| Force | \$\mathbf{F}\$ | newton (N) | kg·m·s‑2 |
| Momentum | \$\mathbf{p}\$ | kilogram metre per second (kg m s⁻¹) | kg·m·s‑1 |
| Pressure, stress | \$p\$ | pascal (Pa) | kg·m‑1·s‑2 |
| Energy, work, heat | \$E\$, \$W\$, \$Q\$ | joule (J) | kg·m2·s‑2 |
| Power | \$P\$ | watt (W) | kg·m2·s‑3 |
| Electric charge | \$q\$ | coulomb (C) | A·s |
| Electric potential (voltage) | \$V\$ | volt (V) | kg·m2·s‑3·A‑1 |
| Capacitance | \$C\$ | farad (F) | kg‑1·m‑2·s4·A2 |
| Resistance | \$R\$ | ohm (Ω) | kg·m2·s‑3·A‑2 |
| Magnetic flux | \$\Phi\$ | weber (Wb) | kg·m2·s‑2·A‑1 |
| Magnetic flux density (induction) | \$B\$ | tesla (T) | kg·s‑2·A‑1 |
| Inductance | \$L\$ | henry (H) | kg·m2·s‑2·A‑2 |
| Frequency | \$f\$ | hertz (Hz) | s‑1 |
| Angular velocity | \$\omega\$ | radian per second (rad s⁻¹) | s‑1 (radian is dimensionless) |
| Torque (moment of force) | \$\tau\$ | newton‑metre (N m) | kg·m2·s‑2 |
$E_{\rm k}= \frac12\;( \text{kg})\;(\text{m·s}^{-1})^{2}
= \frac12\;\text{kg·m}^{2}\text{s}^{-2}$.
For \$m=2.0\$ kg, \$v=5.0\$ m s⁻¹: \$E_{\rm k}= \frac12(2.0)(5.0)^{2}=25\$ J.
$\displaystyle\frac{\Delta E}{E}\approx\frac{\Delta m}{m}+2\frac{\Delta v}{v}
=\frac{0.1}{2.0}+2\frac{0.2}{5.0}=0.05+0.08=0.13$
\$\Delta E\approx0.13\times25\approx3\$ J → \$E_{\rm k}=25\pm3\$ J.
Equation: \$\mathbf{F}=m\mathbf{a}\$.
Thus the units are consistent: \$[\mathbf{F}] = \text{N}\$.
Two carts on a frictionless track: \$m{1}=0.50\$ kg, \$u{1}=2.0\$ m s⁻¹; \$m{2}=0.80\$ kg, \$u{2}=0\$ m s⁻¹. After collision they stick together and move with speed \$v\$.
Torque \$\tau = rF\sin\theta\$.
Power \$P = VI\$ where \$V=12.0\pm0.2\$ V and \$I=1.50\pm0.05\$ A.
=\frac{0.2}{12.0}+\frac{0.05}{1.50}=0.0167+0.0333=0.050$
| Syllabus Section | Coverage in These Notes | What Still Needs to Be Added Elsewhere |
|---|---|---|
| 1–5: Physical quantities, kinematics, dynamics, work‑energy‑power | All SI base units, prefixes, derived‑unit table, unit‑check examples for speed, acceleration, force, momentum, energy, power, torque. | Explicit derivations of the equations of motion, Newton’s laws, energy‑conservation statements, and power‑work relationships. |
| 6–11: Deformation, waves, superposition, electricity, DC circuits, particle physics | Derived units for stress (Pa), electric charge, voltage, resistance, capacitance, magnetic fields – all required for later topics. | Detailed treatment of stress‑strain, Hooke’s law, wave speed \$v=f\lambda\$, Doppler shift, diffraction, electric field \$E\$, Ohm’s law, Kirchhoff’s rules, basic particle‑physics terminology. |
| 12–25: A‑Level extensions (circular motion, gravitation, thermodynamics, oscillations, AC, quantum, nuclear, astronomy) | Units for angular velocity (rad s⁻¹), torque, and magnetic induction are provided. | Full A‑Level content (e.g., \$g = GM/r^{2}\$, \$P = IV\$, \$E = hf\$, \$n = N_A\$, etc.) must be covered in separate topic‑specific notes. |
| Practical Skills (Paper 3 & 5) | Brief section on uncertainty, systematic/random errors, propagation, and significant figures. | Guidance on experimental design, data tables, graph analysis, and error‑budget calculations is required for full AO3 preparation. |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.