| Symbol | Quantity | SI Unit | Typical Expression |
|---|---|---|---|
| m | Mass | kg | given or measured |
| \(\mathbf{v}\) | Velocity (vector) | m s⁻¹ | measured or calculated |
| \(\mathbf{p}\) | Linear momentum (vector) | kg m s⁻¹ | \(\mathbf{p}=m\mathbf{v}\) |
| \(\mathbf{F}\) | Net external force (vector) | N = kg m s⁻² | \(\mathbf{F}= \dfrac{d\mathbf{p}}{dt}\) |
| \(\mathbf{J}\) | Impulse (vector) | N s = kg m s⁻¹ | \(\mathbf{J}= \displaystyle\int\mathbf{F}\,dt = \Delta\mathbf{p}\) |
\[
\mathbf{A}+\mathbf{B}= (Ax+Bx)\,\hat{\mathbf{i}}+(Ay+By)\,\hat{\mathbf{j}}
\]
A force \(\mathbf{F}1 = 30\;\text{N}\) acts east and a second force \(\mathbf{F}2 = 40\;\text{N}\) acts at \(30^{\circ}\) north of east. Find the resultant \(\mathbf{R}\).
\[
F_{2x}=40\cos30^{\circ}=34.6\;\text{N},\qquad
F_{2y}=40\sin30^{\circ}=20.0\;\text{N}
\]
\[
R_x = 30 + 34.6 = 64.6\;\text{N},\qquad
R_y = 0 + 20.0 = 20.0\;\text{N}
\]
\[
|\mathbf{R}|=\sqrt{64.6^2+20.0^2}=67.6\;\text{N},\qquad
\theta = \tan^{-1}\!\left(\frac{20.0}{64.6}\right)=17^{\circ}\;\text{north of east}
\]
The linear momentum \(\mathbf{p}\) of a particle of mass \(m\) moving with velocity \(\mathbf{v}\) is
\[
\boxed{\mathbf{p}=m\mathbf{v}}
\]
Because \(\mathbf{v}\) is a vector, \(\mathbf{p}\) points in the same direction as the motion.
“A body remains at rest or in uniform straight‑line motion unless acted on by a net external force.”
Equivalently: if the net external force is zero, the momentum of the body remains constant.
\[
\boxed{\mathbf{F}_{\text{net}}=\frac{d\mathbf{p}}{dt}}
\]
If the mass is constant, \(\displaystyle \frac{d\mathbf{p}}{dt}=m\frac{d\mathbf{v}}{dt}=m\mathbf{a}\).
For every force \(\mathbf{F}{AB}\) exerted by object A on object B there is an equal and opposite force \(\mathbf{F}{BA}=-\mathbf{F}_{AB}\). The pair of forces produces equal and opposite changes in momentum, ensuring that the total momentum of the isolated pair is conserved.
Integrating Newton’s second law over a time interval \(\Delta t\) gives
\[
\boxed{\mathbf{J}= \int{t1}^{t2}\mathbf{F}\,dt = \Delta\mathbf{p}= \mathbf{p}2-\mathbf{p}_1}
\]
Key graphical interpretations:
For a closed system (no net external force), the vector sum of the momenta of all constituents remains constant:
\[
\boxed{\sum\mathbf{p}{\text{initial}} = \sum\mathbf{p}{\text{final}}}
\]
This principle underpins the analysis of collisions and explosions.
| Collision type | Momentum | Kinetic energy | Typical outcome |
|---|---|---|---|
| Elastic | Conserved | Conserved | Objects rebound; coefficient of restitution \(e = 1\). |
| Inelastic | Conserved | Not conserved (some converted to heat, deformation, sound) | Objects separate with different speeds; \(0 |
| Completely inelastic | Conserved | Not conserved (maximum loss) | Objects stick together; \(e = 0\). |
\[
e = \frac{\text{relative speed after collision}}{\text{relative speed before collision}}
\qquad (0\le e \le 1)
\]
For a one‑dimensional impact of objects 1 and 2:
\[
e = \frac{v{2f}-v{1f}}{v{1i}-v{2i}}
\]
Resultant force \(\mathbf{R}=67.6\;\text{N}\) at \(17^{\circ}\) north of east.
Two carts on a frictionless air track:
Find the velocities after the collision.
\[
mA vA + mB vB = mA vA' + mB vB' \tag{1}
\]
\[
\tfrac12 mA vA^{2}+ \tfrac12 mB vB^{2}= \tfrac12 mA {vA'}^{2}+ \tfrac12 mB {vB'}^{2} \tag{2}
\]
\[
v_A' = -0.57\;\text{m s}^{-1},\qquad
v_B' = +1.43\;\text{m s}^{-1}
\]
\[
\text{Momentum: }0.5(2.0)=0.5(-0.57)+0.8(1.43)=1.0\;\text{kg m s}^{-1}
\]
\[
\text{K.E.: } \tfrac12(0.5)(2.0)^2 = \tfrac12(0.5)(-0.57)^2+\tfrac12(0.8)(1.43)^2 \approx 1.0\;\text{J}
\]
Same masses, but the carts stick together after impact.
\[
mA vA + mB vB = (mA+mB)v'
\]
\[
v' = \frac{0.5\times2.0}{0.5+0.8}=0.77\;\text{m s}^{-1}
\]
Momentum is conserved; kinetic energy after the collision is
\[
K_f = \tfrac12(1.30)(0.77)^2 = 0.39\;\text{J}
\]
Only 39 % of the initial kinetic energy remains; the rest is dissipated as heat/deformation.
Ball 1 (\(m1=0.20\;\text{kg}\)) moves at \(5.0\;\text{m s}^{-1}\) along +x and strikes stationary ball 2 (\(m2=0.20\;\text{kg}\)). After impact ball 1 moves at \(3.0\;\text{m s}^{-1}\) at \(30^{\circ}\) above +x. Find the speed and direction of ball 2.
\[
v_{1x}' = 3.0\cos30^{\circ}=2.60\;\text{m s}^{-1},\qquad
v_{1y}' = 3.0\sin30^{\circ}=1.50\;\text{m s}^{-1}
\]
\[
\begin{aligned}
x:&\; m1 v{1x}=m1 v{1x}'+m2 v{2x}'\\
y:&\; 0=m1 v{1y}'+m2 v{2y}'
\end{aligned}
\]
Substituting numbers (both masses = 0.20 kg):
\[
\begin{aligned}
0.20(5.0)&=0.20(2.60)+0.20 v_{2x}'\\
0&=0.20(1.50)+0.20 v_{2y}'
\end{aligned}
\]
\[
v_{2x}' = 2.20\;\text{m s}^{-1},\qquad
v_{2y}' = -1.50\;\text{m s}^{-1}
\]
\[
v_2'=\sqrt{(2.20)^2+(1.50)^2}=2.7\;\text{m s}^{-1},\qquad
\theta = \tan^{-1}\!\left(\frac{-1.50}{2.20}\right) = -34^{\circ}
\]
(34° below the +x‑axis).
\[
p{\text{initial}} = m1 v{1i}+m2 v_{2i},\qquad
p{\text{final}} = m1 v{1f}+m2 v_{2f}
\]
Linear momentum \(\mathbf{p}=m\mathbf{v}\) links an object’s mass and its motion. Newton’s first law states that without a net external force the momentum stays constant; the second law quantifies the change (\(\mathbf{F}=d\mathbf{p}/dt\)), leading to the impulse‑momentum theorem. Newton’s third law guarantees that internal forces produce equal and opposite momentum changes, so the total momentum of a closed system is conserved. This conservation law, together with the distinction between elastic and inelastic collisions (and the coefficient of restitution), provides a powerful framework for solving both one‑ and two‑dimensional problems, interpreting graphs, and designing experiments that test fundamental dynamics.

Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.