Published by Patrick Mutisya · 14 days ago
By the end of this lesson you should be able to:
The following table summarises the graphical symbol, Boolean function and a typical Boolean expression for each gate.
| Gate | Symbol (textual) | Boolean Function | Typical Expression |
|---|---|---|---|
| NOT | ¬A | \$\overline{A}\$ | \$\overline{A}\$ |
| AND | A·B | \$A \cdot B\$ | \$A \, \&\& \, B\$ |
| OR | A+B | \$A + B\$ | \$A \, || \, B\$ |
| NAND | ¬(A·B) | \$\overline{A \cdot B}\$ | \$\overline{(A \, \&\& \, B)}\$ |
| NOR | ¬(A+B) | \$\overline{A + B}\$ | \$\overline{(A \, || \, B)}\$ |
| XOR | A⊕B | \$A \oplus B\$ | \$A \, \text{xor} \, B\$ |
Each gate’s behaviour is defined by its truth table. The tables below use the standard binary values 0 (false) and 1 (true).
| A | Output \$\overline{A}\$ |
|---|---|
| 0 | 1 |
| 1 | 0 |
| A | B | Output \$A \cdot B\$ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
| A | B | Output \$A + B\$ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |
| A | B | Output \$\overline{A \cdot B}\$ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| A | B | Output \$\overline{A + B}\$ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |
| A | B | Output \$A \oplus B\$ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
A combinational circuit produces an output that depends only on the current inputs. The following example demonstrates how to build a circuit that implements the Boolean function:
\$F = (A \cdot B) + (\overline{C})\$
Steps to construct the circuit:
To verify the circuit, construct a truth table for all possible combinations of \$A\$, \$B\$, and \$C\$.
| A | B | C | \$A \cdot B\$ | \$\overline{C}\$ | \$F = (A \cdot B) + (\overline{C})\$ |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 |
Understanding the six fundamental gates and their truth tables provides the foundation for designing more complex combinational and sequential circuits. Mastery of Boolean algebra, together with the ability to translate expressions into gate diagrams, is essential for the A‑Level Computer Science syllabus.