Published by Patrick Mutisya · 14 days ago
Derive, using Kirchhoff’s laws, a formula for the combined resistance of two or more resistors in parallel.
\$I{\text{source}} = I1 + I_2\$
where \$I1\$ and \$I2\$ are the currents through \$R1\$ and \$R2\$ respectively.
\$I1 = \frac{V}{R1}, \qquad I2 = \frac{V}{R2}\$
\$I{\text{source}} = \frac{V}{R1} + \frac{V}{R2} = V\!\left(\frac{1}{R1} + \frac{1}{R_2}\right)\$
\$\frac{V}{R{\text{eq}}} = V\!\left(\frac{1}{R1} + \frac{1}{R_2}\right)\$
\$\frac{1}{R{\text{eq}}} = \frac{1}{R1} + \frac{1}{R_2}\$
\$\boxed{R{\text{eq}} = \frac{1}{\displaystyle\frac{1}{R1} + \frac{1}{R_2}}}\$
For \$n\$ resistors \$R1, R2, \dots , R_n\$ connected in parallel, the same reasoning gives:
\$\frac{1}{R{\text{eq}}} = \sum{k=1}^{n}\frac{1}{R_k}\$
or equivalently,
\$R{\text{eq}} = \left(\sum{k=1}^{n}\frac{1}{R_k}\right)^{-1}\$
| Configuration | Formula for Equivalent Resistance | Key Steps Using Kirchhoff’s Laws |
|---|---|---|
| Two resistors in parallel | \$\displaystyle R{\text{eq}} = \frac{1}{\frac{1}{R1}+\frac{1}{R_2}}\$ | KCL at the junction → express branch currents with Ohm’s law → solve for \$R_{\text{eq}}\$. |
| \$n\$ resistors in parallel | \$\displaystyle \frac{1}{R{\text{eq}}} = \sum{k=1}^{n}\frac{1}{R_k}\$ | Generalise KCL to \$n\$ branches → apply Ohm’s law to each branch → combine. |