Published by Patrick Mutisya · 14 days ago
Explain how a single diode can be used to convert an alternating current (AC) into a pulsating direct current (DC) by half‑wave rectification.
A diode conducts current only when it is forward‑biased. In an AC supply the voltage varies sinusoidally:
\$v{\text{in}}(t)=V{\!m}\sin(\omega t)\$
When the instantaneous voltage is positive (forward‑bias), the diode conducts and the output follows the input. When the voltage is negative (reverse‑bias), the diode blocks current and the output is forced to zero.
The resulting output voltage \$v_{\text{out}}(t)\$ is:
\$\$v_{\text{out}}(t)=
\begin{cases}
V_{\!m}\sin(\omega t), & \text{for } 0\le \omega t \le \pi \\
0, & \text{for } \pi < \omega t \le 2\pi
\end{cases}\$\$
This is a series of positive half‑cycles separated by intervals of zero voltage.
\$V{\text{avg}}=\frac{1}{\pi}\int{0}^{\pi}V{\!m}\sin\theta\,d\theta=\frac{V{\!m}}{\pi}\$
\$V{\text{rms}}=\sqrt{\frac{1}{2\pi}\int{0}^{\pi}V{\!m}^{2}\sin^{2}\theta\,d\theta}= \frac{V{\!m}}{2}\$
\$r=\frac{\sqrt{V{\text{rms}}^{2}-V{\text{avg}}^{2}}}{V_{\text{avg}}}\approx 1.21\$
Connecting a capacitor \$C\$ across the load stores charge during the conducting half‑cycle and releases it during the non‑conducting interval, reducing ripple.
The peak‑to‑peak ripple voltage \$\Delta V\$ can be approximated by:
\$\Delta V \approx \frac{I_{\text{load}}}{f C}\$
where \$I_{\text{load}}\$ is the load current and \$f\$ is the AC supply frequency.
| Parameter | Expression | Typical \cdot alue (for 230 V rms, 50 Hz) |
|---|---|---|
| Peak input voltage \$V_{\!m}\$ | \$\sqrt{2}\,V_{\text{rms}}\$ | ≈ 325 V |
| Average output voltage \$V_{\text{avg}}\$ | \$V_{\!m}/\pi\$ | ≈ 103 V |
| RMS output voltage \$V_{\text{rms}}\$ | \$V_{\!m}/2\$ | ≈ 162 V |
| Ripple factor \$r\$ | ≈ 1.21 | – |
A single diode allows only the positive half of an AC waveform to pass, producing a pulsating DC. While simple, the output contains significant ripple, which can be reduced by adding a smoothing capacitor or by using more advanced rectifier circuits.