Describe the composition, mass and charge of the three main types of nuclear radiation (α, β⁻, β⁺ and γ). Write correct decay equations (including neutrinos/antineutrinos), state the relevant conservation laws and recognise the characteristic energy spectra of α‑ and β‑radiations.
Suggested diagram: a beam of α‑particles incident on a gold foil with some particles scattered at wide angles, indicating a compact nucleus.
An isotope is a nuclide with the same Z (same element) but a different A (different number of neutrons).
| Notation | Isotope | Explanation |
|---|---|---|
| \({}^{12}_{6}\!C\) | Carbon‑12 | A = 12, Z = 6 (6 p + 6 n) |
| \({}^{14}_{6}\!C\) | Carbon‑14 | A = 14, Z = 6 (6 p + 8 n) – radioactive |
In a decay the superscript (A) and subscript (Z) change according to the type of radiation emitted, while the element symbol (X) may change when Z changes.
| Radiation | Particle / Photon | Composition (nuclear notation) | Mass (relative to 1 u) | Charge (in e) | Energy Spectrum | Typical Shielding / Penetration |
|---|---|---|---|---|---|---|
| α | Helium‑2 nucleus | \({}^{4}_{2}\!He\) (2 p + 2 n) | ≈ 4 u (6.64 × 10⁻²⁷ kg) | +2 e | Discrete (single kinetic energy per isotope) | Stopped by a sheet of paper, a few cm of air or ≈ 0.5 mm Al |
| β⁻ | Electron | e⁻ (no nucleus) | ≈ 5.5 × 10⁻⁴ u (9.11 × 10⁻³¹ kg) | –1 e | Continuous (0 → Emax) | Few mm of aluminium; higher energies need cm of Al |
| β⁺ | Positron (antielectron) | e⁺ (no nucleus) | ≈ 5.5 × 10⁻⁴ u (9.11 × 10⁻³¹ kg) | +1 e | Continuous (0 → Emax) | Few mm of Al; annihilation produces two 511 keV γ‑rays |
| γ | Photon (electromagnetic wave) | — | 0 (no rest mass) | 0 (neutral) | Discrete (energy = nuclear level difference) | Highly penetrating – several cm of lead or metres of concrete |
General form
\[
{}^{A}{Z}\!X \;\longrightarrow\; {}^{A-4}{Z-2}\!Y \;+\; {}^{4}_{2}\!He\;(\alpha)
\]
Example (uranium‑238)
\[
{}^{238}{92}\!U \;\longrightarrow\; {}^{234}{90}\!Th \;+\; {}^{4}_{2}\!He
\]
\[
{}^{A}{Z}\!X \;\longrightarrow\; {}^{A}{Z+1}\!Y \;+\; e^{-} \;+\; \bar{\nu}_{e}
\]
Example (carbon‑14)
\[
{}^{14}{6}\!C \;\longrightarrow\; {}^{14}{7}\!N \;+\; e^{-} \;+\; \bar{\nu}_{e}
\]
\[
{}^{A}{Z}\!X \;\longrightarrow\; {}^{A}{Z-1}\!Y \;+\; e^{+} \;+\; \nu_{e}
\]
Example (fluorine‑18)
\[
{}^{18}{9}\!F \;\longrightarrow\; {}^{18}{8}\!O \;+\; e^{+} \;+\; \nu_{e}
\]
\[
{}^{A}{Z}\!X \;+\; e^{-}{\text{(K or L shell)}} \;\longrightarrow\; {}^{A}{Z-1}\!Y \;+\; \nu{e}
\]
Example (beryllium‑7)
\[
{}^{7}{4}\!Be \;+\; e^{-} \;\longrightarrow\; {}^{7}{3}\!Li \;+\; \nu_{e}
\]
\[
{}^{A}{Z}\!X^{*} \;\longrightarrow\; {}^{A}{Z}\!X \;+\; \gamma
\]
\({}^{A}_{Z}\!X^{*}\) denotes an excited nucleus that de‑excites by emitting a photon.
| Radiation | Particle / Photon | Mass (kg) | Charge (e) | Energy Spectrum | Typical Shielding |
|---|---|---|---|---|---|
| α | He‑2 nucleus | 6.64 × 10⁻²⁷ | +2 | Discrete | Paper, 0.5 mm Al |
| β⁻ | Electron | 9.11 × 10⁻³¹ | –1 | Continuous | Few mm Al |
| β⁺ | Positron | 9.11 × 10⁻³¹ | +1 | Continuous | Few mm Al (plus 511 keV γ‑rays) |
| γ | Photon | 0 | 0 | Discrete | Several cm Pb or m concrete |
A single illustration showing a nucleus emitting:
Next to each arrow indicate relative size, charge symbol, typical shielding material and, for β⁺, the annihilation γ‑rays.
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.