\$\mathbf{E}=\frac{\mathbf{F}}{q_{\text{test}}}\qquad\bigl[\text{N C}^{-1}= \text{V m}^{-1}\bigr]\$

For an isolated point charge Q the field is radial and follows an inverse‑square law:
\$\$\mathbf{E}= \frac{1}{4\pi\varepsilon_{0}}\,\frac{Q}{r^{2}}\;\hat{\mathbf{r}}
\;=\;k\frac{Q}{r^{2}}\;\hat{\mathbf{r}} \qquad\bigl(k=8.99\times10^{9}\,\text{N m}^{2}\text{C}^{-2}\bigr)\$\$
For an infinitely large sheet with surface charge density σ (C m⁻²), Gauss’s law gives a constant field on each side:
\$E{\text{sheet}}=\frac{\sigma}{2\varepsilon{0}}\quad\text{(uniform, perpendicular to the sheet)}\$
Two large parallel plates carrying opposite surface charge densities +σ and –σ produce a nearly uniform field between them because the fields from the two sheets add:
\$E{\text{between}}=\frac{\sigma}{\varepsilon{0}}\$
In practice we use the simpler relation
\$E=\frac{V}{d}\qquad\text{or}\qquad V=E\,d\$
where d is the plate separation and V the potential difference.

The magnitude of the electrostatic force between two point charges Q₁ and Q₂ separated by a distance r in free space is
\$F = \frac{1}{4\pi\varepsilon{0}}\,\frac{|Q{1}Q{2}|}{r^{2}} = k\frac{|Q{1}Q_{2}|}{r^{2}}\$
Vector form (including direction):
\$\mathbf{F}{12}=k\frac{Q{1}Q{2}}{r^{2}}\;\hat{\mathbf{r}}{12}\$
The field produced by Q₁ at the location of Q₂ is
\$\mathbf{E}{1}=k\frac{Q{1}}{r^{2}}\;\hat{\mathbf{r}}_{12}\$
and the force on Q₂ is simply
\$\mathbf{F}{12}=Q{2}\mathbf{E}_{1}\$
This shows that Coulomb’s law is a special case of the general relation \$\mathbf{F}=q\mathbf{E}\$.
Electric potential V at a point is the work required to bring a unit positive charge from infinity to that point, without acceleration:
\$V=\frac{W}{q}\qquad\bigl[\text{J C}^{-1}= \text{V}\bigr]\$
Potential is a scalar; the potential difference between points A and B is
\$\Delta V = V{B}-V{A}= -\int_{A}^{B}\mathbf{E}\!\cdot\!d\mathbf{s}\$
\$V(r)=k\frac{Q}{r}\$
Reference is usually taken at infinity where \$V=0\$.
When the field is uniform and directed along the \$x\$‑axis:
\$\Delta V = -E\,\Delta x\qquad\text{or}\qquad V = -Ex + \text{constant}\$
\$\Delta x = \frac{\Delta V}{E}\$
Problem: Two point charges, \$Q{1}=+5.0\,\mu\text{C}\$ and \$Q{2}=-3.0\,\mu\text{C}\$, are \$r=0.20\,\$m apart in vacuum. Find the magnitude and direction of the force on each charge.
\$\$F = k\frac{|Q{1}Q{2}|}{r^{2}}
= 8.99\times10^{9}\frac{(5.0\times10^{-6})(3.0\times10^{-6})}{(0.20)^{2}}
\approx 1.35\ \text{N}\$\$
Problem: A parallel‑plate capacitor has plate separation \$d=4.0\,\$cm and a potential difference \$V=120\,\$V. Determine (a) the field magnitude, (b) the force on an electron placed midway, and (c) the electron’s initial acceleration.
\$E = \frac{V}{d}= \frac{120}{0.040}=3.0\times10^{3}\ \text{N C}^{-1}\$
\$\$F = qE = (-1.60\times10^{-19})(3.0\times10^{3})
= -4.8\times10^{-16}\ \text{N}\$\$
(negative sign = opposite to the field direction).
\$\$a = \frac{|F|}{m_{e}} = \frac{4.8\times10^{-16}}{9.11\times10^{-31}}
\approx 5.3\times10^{14}\ \text{m s}^{-2}\$\$
\$F = k\frac{(2.0\times10^{-6})^{2}}{(0.10)^{2}}\approx 3.6\ \text{N}\$ (repulsive).
\$E = \frac{V}{d}= \frac{200}{0.050}=4.0\times10^{3}\ \text{N C}^{-1}\$
Force: \$F=eE= (1.60\times10^{-19})(5.0\times10^{5})=8.0\times10^{-14}\ \text{N}\$
Acceleration: \$a=F/m_{p}=8.0\times10^{-14}/1.67\times10^{-27}\approx4.8\times10^{13}\ \text{m s}^{-2}\$.
\$V = k\frac{Q}{r}= \frac{8.99\times10^{9}\times8.0\times10^{-9}}{0.15}\approx4.8\times10^{2}\ \text{V}\$
Solution sketch:
| Quantity | Formula | Units |
|---|---|---|
| Electric field (definition) | \$\displaystyle \mathbf{E}=\frac{\mathbf{F}}{q}\$ | N C⁻¹ (V m⁻¹) |
| Field of a point charge | \$\displaystyle \mathbf{E}=k\frac{Q}{r^{2}}\hat{\mathbf{r}}\$ | N C⁻¹ |
| Field of an infinite sheet | \$\displaystyle E=\frac{\sigma}{2\varepsilon_{0}}\$ | N C⁻¹ |
| Uniform field between parallel plates | \$\displaystyle E=\frac{\sigma}{\varepsilon_{0}}=\frac{V}{d}\$ | N C⁻¹ |
| Coulomb force (magnitude) | \$\displaystyle F=k\frac{|Q{1}Q{2}|}{r^{2}}\$ | N |
| Coulomb force (vector) | \$\displaystyle \mathbf{F}{12}=k\frac{Q{1}Q{2}}{r^{2}}\hat{\mathbf{r}}{12}\$ | N |
| Force in a known field | \$\displaystyle \mathbf{F}=q\mathbf{E}\$ | N |
| Electric potential (point charge) | \$\displaystyle V=k\frac{Q}{r}\$ | V |
| Potential difference in a uniform field | \$\displaystyle \Delta V=-E\,d\$ | V |
| Relation between field and potential | \$\displaystyle \mathbf{E}= -\nabla V\$ | N C⁻¹ |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.