This case‑study links two core syllabus topics to real‑world astrophysics, while explicitly showing connections to the wider Cambridge 9702 programme.
All other syllabus units (kinematics, dynamics, work & energy, fields, particles, nuclear physics, etc.) are referenced in the Link‑to‑other‑topics boxes so students can see the wider context.
| Quantity | Symbol | Definition | SI unit |
|---|---|---|---|
| Luminosity | \$L\$ | Total power emitted by a star | W |
| Effective temperature | \$T_{\mathrm{eff}}\$ | Temperature of a black‑body emitting the same power per unit area | K |
| Radius | \$R\$ | Distance from the centre to the surface of the star | m |
For a perfect black‑body the radiant exitance (power per unit area) is
\[
M = \sigma T^{4},
\]
with \$\sigma = 5.670374419\times10^{-8}\ \text{W\,m}^{-2}\text{K}^{-4}\$.
A spherical star of radius \$R\$ has surface area \$A = 4\pi R^{2}\$, therefore
\[
L = A\,M = 4\pi R^{2}\sigma T_{\mathrm{eff}}^{4}.
\]
Re‑arranging for the radius gives the formula used in calculations:
\[
\boxed{R = \sqrt{\dfrac{L}{4\pi\sigma T_{\mathrm{eff}}^{4}}}}.
\]
\[
L = L{\odot}\,10^{0.4\,(M{\odot}-M)},
\]
where \$L{\odot}=3.828\times10^{26}\ \text{W}\$ and \$M{\odot}=4.83\$.
For \$R = (L/4\pi\sigma T^{4})^{1/2}\$ the fractional uncertainty is
\[
\frac{\delta R}{R}= \frac12\frac{\delta L}{L}+2\frac{\delta T}{T}.
\]
Example: \$\delta L/L = 5\%\$, \$\delta T/T = 2\%\$ → \$\delta R/R = 0.5(0.05)+2(0.02)=0.045\$ (4.5 %).
Given: \$M = 0\$, \$T_{\mathrm{eff}} = 10\,000\ \text{K}\$, \$\delta M = 0.1\ \text{mag}\$, \$\delta T = 200\ \text{K}\$.
\[
L = 3.828\times10^{26}\ \text{W}\times10^{0.4\,(4.83-0)}
\approx 1.20\times10^{28}\ \text{W}.
\]
Fractional error from magnitude:
\[
\frac{\delta L}{L}=0.4\ln10\,\delta M\approx0.921\times0.1=0.092\;(9.2\%).
\]
\[
R = \sqrt{\frac{1.20\times10^{28}}{4\pi(5.670374419\times10^{-8})(10^{4})^{4}}}
\approx 1.02\times10^{9}\ \text{m}=1.47\,R_{\odot}.
\]
\[
\frac{\delta R}{R}= \tfrac12(0.092)+2\left(\frac{200}{10\,000}\right)
=0.046+0.040=0.086\;(8.6\%),
\qquad
\delta R \approx 8.8\times10^{7}\ \text{m}.
\]
| Topic | Connection |
|---|---|
| Topic 4 – Energy, work and power | Luminosity \$L\$ is power (J s⁻¹). |
| Topic 2 – Measurements & uncertainties | Propagation of errors for \$R\$ (AO3). |
| Topic 5 – Vectors | Radiative flux \$\mathbf{F}=L\,\hat{\mathbf r}/4\pi d^{2}\$ uses vector notation. |
| Topic 13 – Nuclear physics | Stellar energy generation (fusion) underpins \$L\$. |
For a source moving directly away with speed \$v\ll c\$:
\[
z \equiv \frac{\lambda{\text{obs}}-\lambda{0}}{\lambda_{0}} \approx \frac{v}{c},
\]
where \$z\$ is the (dimensionless) red‑shift and \$c=2.998\times10^{8}\ \text{m s}^{-1}\$.
\[
\boxed{\mathbf{v}=H_{0}\,\mathbf{d}}
\]
Both \$\mathbf{v}\$ and \$\mathbf{d}\$ point radially away from the observer; \$H_{0}\$ is the Hubble constant (SI unit s⁻¹).
Typical textbook value:
\[
H_{0}=70\ \text{km\,s}^{-1}\text{Mpc}^{-1}.
\]
Using \$1\ \text{Mpc}=3.0857\times10^{22}\ \text{m}\$:
\[
H_{0}= \frac{70\,000\ \text{m\,s}^{-1}}{3.0857\times10^{22}\ \text{m}}
\approx 2.27\times10^{-18}\ \text{s}^{-1}.
\]
\[
v = cz.
\]
\[
d = \frac{v}{H_{0}}.
\]
Galaxy red‑shift: \$z = 0.015\$.
\[
v = cz = (2.998\times10^{8})(0.015)=4.50\times10^{6}\ \text{m s}^{-1}.
\]
\[
d = \frac{4.50\times10^{6}}{2.27\times10^{-18}}
=1.98\times10^{24}\ \text{m}\approx 64\ \text{Mpc}.
\]
\[
\frac{\delta v}{v}= \frac{\delta z}{z}= \frac{0.001}{0.015}=0.067,
\qquad
\frac{\delta d}{d}= \frac{\delta v}{v}=6.7\%.
\]
Two complementary activities are suggested so that the case‑study satisfies the required practical skills.
The linear relation \$\mathbf{v}=H_{0}\mathbf{d}\$ implies that every galaxy recedes from every other galaxy. Extrapolating this motion backwards in time reduces all separations to zero at a finite epoch – the Big Bang. Supporting evidence listed in the syllabus includes:
| Topic | Connection |
|---|---|
| Topic 12 – Circular motion & gravitation | Hubble flow can be interpreted as galaxies moving apart under the influence of the metric expansion of space; Newtonian gravity provides a first‑order estimate of escape velocities. |
| Topic 14 – Thermodynamics | CMB temperature (2.73 K) is a thermodynamic relic of the hot early Universe. |
| Topic 16 – Quantum phenomena | Photon energy \$E=hf\$ is used when discussing spectral lines and the CMB spectrum. |
| Topic 20 – Nuclear physics | Big Bang nucleosynthesis involves nuclear reactions in the first minutes after the singularity. |
| Topic 22 – Medical physics | Black‑body radiation concepts are also applied in diagnostic imaging (e.g., infrared thermography). |
| Constant | Symbol | Value | Units |
|---|---|---|---|
| Speed of light | \$c\$ | 2.998 × 10⁸ | m s⁻¹ |
| Stefan‑Boltzmann constant | \$\sigma\$ | 5.670374419 × 10⁻⁸ | W m⁻² K⁻⁴ |
| Solar luminosity | \$L_{\odot}\$ | 3.828 × 10²⁶ | W |
| Solar radius | \$R_{\odot}\$ | 6.96 × 10⁸ | m |
| Parsec | 1 pc | 3.0857 × 10¹⁶ | m |
| Megaparsec | 1 Mpc | 3.0857 × 10²² | m |
| Learning activity | AO1 (knowledge) | AO2 (application) | AO3 (experimental) |
|---|---|---|---|
| Derive Stefan‑Boltzmann relation | ✓ | ||
| Convert magnitude to luminosity | ✓ | ✓ | |
| Propagate uncertainties for \$R\$ and \$d\$ | ✓ | ||
| Calculate distance from red‑shift (worked example) | ✓ | ✓ | |
| Plan and execute red‑shift spectrograph activity (Activity A) | ✓ | ✓ | |
| Black‑body laboratory experiment (Activity B) | ✓ | ✓ | |
| Explain how Hubble’s law leads to the Big Bang | ✓ | ✓ |
| Formula | Use in this note |
|---|---|
| \$v = \frac{\Delta x}{\Delta t}\$ | Conceptual link to recession speed \$v\$. |
| \$F = ma\$ | Underlying principle when discussing gravitational binding of galaxies. |
| Formula | Use in this note |
|---|---|
| Power \$P = \frac{E}{t}\$ | Definition of luminosity \$L\$ (energy per unit time). |
| Energy \$E = Pt\$ | Relates electrical power in Activity B to radiated energy. |
| Concept | Use in this note |
|---|---|
| Wave speed \$v = f\lambda\$ | Underlying physics of spectral lines and Doppler shift. |
| Superposition of waves | Explains line broadening in astronomical spectra. |
| Formula | Use in this note |
|---|---|
| \$P = VI\$ | Activity B – electrical power supplied to the filament lamp. |
| Formula/Concept | Use in this note |
|---|---|
| Electromagnetic wave speed \$c = \frac{1}{\sqrt{\mu0\varepsilon0}}\$ | Justifies using \$c\$ in the red‑shift formula. |
| Frequency–wavelength relation \$c = f\lambda\$ | Relevant when identifying spectral lines. |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.