recall and use Hubble’s law v . H0d and explain how this leads to the Big Bang theory (candidates will only be required to use SI units)

Cambridge IGCSE / A‑Level Physics (9702) – Astrophysics Applications

How this note fits the syllabus

This case‑study links two core syllabus topics to real‑world astrophysics, while explicitly showing connections to the wider Cambridge 9702 programme.

  • Topic 7 – Waves and the electromagnetic spectrum: Stefan‑Boltzmann law, black‑body radiation, stellar luminosity.
  • Topic 21 – Alternating currents & electromagnetic waves: Doppler shift, red‑shift, recession velocity, Hubble’s law.

All other syllabus units (kinematics, dynamics, work & energy, fields, particles, nuclear physics, etc.) are referenced in the Link‑to‑other‑topics boxes so students can see the wider context.


1. Stellar Radii – Using the Stefan‑Boltzmann Law

1.1 Key definitions (AO1)

QuantitySymbolDefinitionSI unit
Luminosity\$L\$Total power emitted by a starW
Effective temperature\$T_{\mathrm{eff}}\$Temperature of a black‑body emitting the same power per unit areaK
Radius\$R\$Distance from the centre to the surface of the starm

1.2 Derivation of the Stefan‑Boltzmann relation (AO1)

For a perfect black‑body the radiant exitance (power per unit area) is

\[

M = \sigma T^{4},

\]

with \$\sigma = 5.670374419\times10^{-8}\ \text{W\,m}^{-2}\text{K}^{-4}\$.

A spherical star of radius \$R\$ has surface area \$A = 4\pi R^{2}\$, therefore

\[

L = A\,M = 4\pi R^{2}\sigma T_{\mathrm{eff}}^{4}.

\]

Re‑arranging for the radius gives the formula used in calculations:

\[

\boxed{R = \sqrt{\dfrac{L}{4\pi\sigma T_{\mathrm{eff}}^{4}}}}.

\]

1.3 Converting observed quantities to \$L\$ and \$T_{\mathrm{eff}}\$ (AO2)

  1. Absolute magnitude \$M\$ → luminosity (using the Sun as a reference):

    \[

    L = L{\odot}\,10^{0.4\,(M{\odot}-M)},

    \]

    where \$L{\odot}=3.828\times10^{26}\ \text{W}\$ and \$M{\odot}=4.83\$.

  2. Spectral type or colour index → \$T_{\mathrm{eff}}\$. Typical values are listed in the syllabus table for stellar classification (see Link‑to‑Topic 7).

1.4 Uncertainty propagation (AO3)

For \$R = (L/4\pi\sigma T^{4})^{1/2}\$ the fractional uncertainty is

\[

\frac{\delta R}{R}= \frac12\frac{\delta L}{L}+2\frac{\delta T}{T}.

\]

Example: \$\delta L/L = 5\%\$, \$\delta T/T = 2\%\$\$\delta R/R = 0.5(0.05)+2(0.02)=0.045\$ (4.5 %).

1.5 Worked example (SI units)

Given: \$M = 0\$, \$T_{\mathrm{eff}} = 10\,000\ \text{K}\$, \$\delta M = 0.1\ \text{mag}\$, \$\delta T = 200\ \text{K}\$.

  1. Luminosity:

    \[

    L = 3.828\times10^{26}\ \text{W}\times10^{0.4\,(4.83-0)}

    \approx 1.20\times10^{28}\ \text{W}.

    \]

    Fractional error from magnitude:

    \[

    \frac{\delta L}{L}=0.4\ln10\,\delta M\approx0.921\times0.1=0.092\;(9.2\%).

    \]

  2. Radius:

    \[

    R = \sqrt{\frac{1.20\times10^{28}}{4\pi(5.670374419\times10^{-8})(10^{4})^{4}}}

    \approx 1.02\times10^{9}\ \text{m}=1.47\,R_{\odot}.

    \]

  3. Uncertainty in \$R\$:

    \[

    \frac{\delta R}{R}= \tfrac12(0.092)+2\left(\frac{200}{10\,000}\right)

    =0.046+0.040=0.086\;(8.6\%),

    \qquad

    \delta R \approx 8.8\times10^{7}\ \text{m}.

    \]

1.6 Link‑to‑other‑topics (quick‑ref)

TopicConnection
Topic 4 – Energy, work and powerLuminosity \$L\$ is power (J s⁻¹).
Topic 2 – Measurements & uncertaintiesPropagation of errors for \$R\$ (AO3).
Topic 5 – VectorsRadiative flux \$\mathbf{F}=L\,\hat{\mathbf r}/4\pi d^{2}\$ uses vector notation.
Topic 13 – Nuclear physicsStellar energy generation (fusion) underpins \$L\$.


2. Hubble’s Law – The Expanding Universe

2.1 Doppler (red‑shift) formula (AO1)

For a source moving directly away with speed \$v\ll c\$:

\[

z \equiv \frac{\lambda{\text{obs}}-\lambda{0}}{\lambda_{0}} \approx \frac{v}{c},

\]

where \$z\$ is the (dimensionless) red‑shift and \$c=2.998\times10^{8}\ \text{m s}^{-1}\$.

2.2 Statement of Hubble’s law (vector form, AO1)

\[

\boxed{\mathbf{v}=H_{0}\,\mathbf{d}}

\]

Both \$\mathbf{v}\$ and \$\mathbf{d}\$ point radially away from the observer; \$H_{0}\$ is the Hubble constant (SI unit s⁻¹).

2.3 Converting the conventional value to SI (AO2)

Typical textbook value:

\[

H_{0}=70\ \text{km\,s}^{-1}\text{Mpc}^{-1}.

\]

Using \$1\ \text{Mpc}=3.0857\times10^{22}\ \text{m}\$:

\[

H_{0}= \frac{70\,000\ \text{m\,s}^{-1}}{3.0857\times10^{22}\ \text{m}}

\approx 2.27\times10^{-18}\ \text{s}^{-1}.

\]

2.4 Step‑by‑step use of Hubble’s law (AO2)

  1. Measure the red‑shift \$z\$ from a known spectral line (e.g. Hα at 656.3 nm).
  2. Calculate recession speed (valid for \$z\ll1\$):

    \[

    v = cz.

    \]

  3. Rearrange Hubble’s law to obtain the distance:

    \[

    d = \frac{v}{H_{0}}.

    \]

  4. Insert \$v\$ (m s⁻¹) and \$H_{0}\$ (s⁻¹) → \$d\$ in metres; convert to Mpc if required.

2.5 Worked example (SI units)

Galaxy red‑shift: \$z = 0.015\$.

  1. Recession speed:

    \[

    v = cz = (2.998\times10^{8})(0.015)=4.50\times10^{6}\ \text{m s}^{-1}.

    \]

  2. Distance:

    \[

    d = \frac{4.50\times10^{6}}{2.27\times10^{-18}}

    =1.98\times10^{24}\ \text{m}\approx 64\ \text{Mpc}.

    \]

  3. Uncertainty (assuming \$\delta z = 0.001\$):

    \[

    \frac{\delta v}{v}= \frac{\delta z}{z}= \frac{0.001}{0.015}=0.067,

    \qquad

    \frac{\delta d}{d}= \frac{\delta v}{v}=6.7\%.

    \]

2.6 Expanded practical / experimental component (AO3)

Two complementary activities are suggested so that the case‑study satisfies the required practical skills.

Activity A – Measuring red‑shift with a spectrograph

  • Plan: Choose a bright galaxy (e.g. M81), obtain its spectrum with a calibrated diffraction grating spectrograph, record the position of Hα (rest = 656.3 nm).
  • Data handling: Convert measured wavelength \$\lambda_{\text{obs}}\$ to \$z\$, then to \$v\$ and \$d\$ using the steps above. Plot \$v\$ versus \$d\$ for at least five galaxies to produce a Hubble diagram.
  • Evaluation:

    • Instrumental wavelength calibration (use a neon lamp).
    • Peculiar velocities – estimate their contribution (±300 km s⁻¹) and discuss impact on \$H_{0}\$.
    • Validity of \$v\approx cz\$ – note that for \$z\gtrsim0.1\$ a relativistic formula is required.

Activity B – Laboratory black‑body experiment (link to Topic 7)

  • Objective: Verify the Stefan‑Boltzmann law by measuring the power output of a filament lamp at different temperatures.
  • Procedure:

    1. Measure voltage \$V\$ and current \$I\$ → electrical power \$P_{\text{elec}} = VI\$.
    2. Use a thermocouple or pyrometer to obtain filament temperature \$T\$.
    3. Place a calibrated radiometer at a known distance \$d\$ to measure radiant flux \$F\$; compute luminosity \$L = 4\pi d^{2}F\$.

  • Analysis: Plot \$L\$ against \$T^{4}\$; the gradient should equal \$4\pi\sigma R^{2}\$, allowing an experimental estimate of \$R\$.
  • Evaluation:

    • Heat losses by conduction/convection – quantify and discuss.
    • Uncertainty in temperature measurement (thermocouple calibration).
    • Assumption of a perfect black‑body – discuss emissivity corrections.

2.7 Linking Hubble’s law to the Big Bang (AO1 & AO2)

The linear relation \$\mathbf{v}=H_{0}\mathbf{d}\$ implies that every galaxy recedes from every other galaxy. Extrapolating this motion backwards in time reduces all separations to zero at a finite epoch – the Big Bang. Supporting evidence listed in the syllabus includes:

  • Cosmic Microwave Background (CMB) – isotropic black‑body radiation (Topic 7).
  • Primordial nucleosynthesis – observed abundances of H, He, Li match theoretical predictions (Topic 13).
  • Hubble diagram – larger red‑shifts for more distant galaxies confirm an expanding space‑time (Topic 21).

2.8 Link‑to‑other‑topics (quick‑ref)

TopicConnection
Topic 12 – Circular motion & gravitationHubble flow can be interpreted as galaxies moving apart under the influence of the metric expansion of space; Newtonian gravity provides a first‑order estimate of escape velocities.
Topic 14 – ThermodynamicsCMB temperature (2.73 K) is a thermodynamic relic of the hot early Universe.
Topic 16 – Quantum phenomenaPhoton energy \$E=hf\$ is used when discussing spectral lines and the CMB spectrum.
Topic 20 – Nuclear physicsBig Bang nucleosynthesis involves nuclear reactions in the first minutes after the singularity.
Topic 22 – Medical physicsBlack‑body radiation concepts are also applied in diagnostic imaging (e.g., infrared thermography).


3. Summary of Key Points for Exam Recall (AO1)

  • Stefan‑Boltzmann law: \$L = 4\pi R^{2}\sigma T{\mathrm{eff}}^{4}\$ → \$R = \sqrt{L/(4\pi\sigma T{\mathrm{eff}}^{4})}\$.
  • Constants: \$\sigma = 5.670374419\times10^{-8}\ \text{W m}^{-2}\text{K}^{-4}\$, \$c = 2.998\times10^{8}\ \text{m s}^{-1}\$.
  • Red‑shift – velocity relation (for \$z\ll1\$): \$v \approx cz\$.
  • Hubble’s law (SI): \$\mathbf{v}=H{0}\mathbf{d}\$ with \$H{0}\approx2.3\times10^{-18}\ \text{s}^{-1}\$.
  • Distance from red‑shift: \$d = \dfrac{cz}{H_{0}}\$ (plug in SI values).
  • Uncertainty propagation:

    • Radius: \$\displaystyle\frac{\delta R}{R}= \frac12\frac{\delta L}{L}+2\frac{\delta T}{T}\$.
    • Distance: \$\displaystyle\frac{\delta d}{d}= \frac{\delta v}{v}= \frac{\delta z}{z}\$ (if \$H_{0}\$ is taken as exact).

  • Big Bang implication – a universal expansion that, when run backwards, leads to a hot, dense singular origin.


4. Useful Physical Constants (SI)

ConstantSymbolValueUnits
Speed of light\$c\$2.998 × 10⁸m s⁻¹
Stefan‑Boltzmann constant\$\sigma\$5.670374419 × 10⁻⁸W m⁻² K⁻⁴
Solar luminosity\$L_{\odot}\$3.828 × 10²⁶W
Solar radius\$R_{\odot}\$6.96 × 10⁸m
Parsec1 pc3.0857 × 10¹⁶m
Megaparsec1 Mpc3.0857 × 10²²m


5. Suggested Diagrams for Revision Notes

  • Hertzsprung–Russell diagram – shows \$L\propto R^{2}T^{4}\$ and the position of the example star.
  • Hubble diagram – recession velocity \$v\$ versus distance \$d\$ with a straight‑line fit defining \$H_{0}\$.
  • Red‑shift illustration – laboratory spectrum vs. astronomical spectrum, indicating the wavelength shift.
  • Black‑body spectrum – demonstrates the CMB as a perfect black‑body curve.


6. Assessment‑Objective Mapping (AO1–AO3)

Learning activityAO1 (knowledge)AO2 (application)AO3 (experimental)
Derive Stefan‑Boltzmann relation
Convert magnitude to luminosity
Propagate uncertainties for \$R\$ and \$d\$
Calculate distance from red‑shift (worked example)
Plan and execute red‑shift spectrograph activity (Activity A)
Black‑body laboratory experiment (Activity B)
Explain how Hubble’s law leads to the Big Bang


7. Quick‑Reference Tables for Other Syllabus Topics Used

7.1 Kinematics & dynamics (Topics 1‑3)

FormulaUse in this note
\$v = \frac{\Delta x}{\Delta t}\$Conceptual link to recession speed \$v\$.
\$F = ma\$Underlying principle when discussing gravitational binding of galaxies.

7.2 Work, energy & power (Topic 4)

FormulaUse in this note
Power \$P = \frac{E}{t}\$Definition of luminosity \$L\$ (energy per unit time).
Energy \$E = Pt\$Relates electrical power in Activity B to radiated energy.

7.3 Waves & superposition (Topic 5)

ConceptUse in this note
Wave speed \$v = f\lambda\$Underlying physics of spectral lines and Doppler shift.
Superposition of wavesExplains line broadening in astronomical spectra.

7.4 Electricity & DC circuits (Topic 8)

FormulaUse in this note
\$P = VI\$Activity B – electrical power supplied to the filament lamp.

7.5 AC & electromagnetic waves (Topic 21)

Formula/ConceptUse in this note
Electromagnetic wave speed \$c = \frac{1}{\sqrt{\mu0\varepsilon0}}\$Justifies using \$c\$ in the red‑shift formula.
Frequency–wavelength relation \$c = f\lambda\$Relevant when identifying spectral lines.