Published by Patrick Mutisya · 14 days ago
Define force as the rate of change of momentum and apply this definition to solve quantitative problems.
The linear momentum \$\mathbf{p}\$ of a particle of mass \$m\$ moving with velocity \$\mathbf{v}\$ is defined as
\$\mathbf{p}=m\mathbf{v}\$
Momentum is a vector quantity; its direction is the same as the velocity vector.
Newton’s second law can be written most generally as
\$\mathbf{F} = \frac{d\mathbf{p}}{dt}\$
where \$\mathbf{F}\$ is the net external force acting on the particle.
If the mass \$m\$ is constant, the derivative expands to
\$\mathbf{F}= \frac{d}{dt}(m\mathbf{v}) = m\frac{d\mathbf{v}}{dt}=m\mathbf{a}\$
Thus the familiar form \$\mathbf{F}=m\mathbf{a}\$ is a special case of the more general momentum form.
When mass changes with time, the full derivative must be retained:
\$\mathbf{F}= \frac{d}{dt}(m\mathbf{v}) = m\frac{d\mathbf{v}}{dt}+\mathbf{v}\frac{dm}{dt}\$
This expression is essential for analysing rockets and other systems where mass is ejected or accreted.
From the definition \$\mathbf{F}=d\mathbf{p}/dt\$, several useful results follow.
Integrating the definition over a finite time interval \$[t1,t2]\$ gives
\$\int{t1}^{t2}\mathbf{F}\,dt = \mathbf{p}(t2)-\mathbf{p}(t_1)=\Delta\mathbf{p}\$
The left‑hand side is the impulse \$\mathbf{J}\$ delivered to the object:
\$\mathbf{J}= \int{t1}^{t_2}\mathbf{F}\,dt = \Delta\mathbf{p}\$
Impulse has the same units as momentum (kg·m·s⁻¹) and provides a convenient way to relate forces that act over short time intervals (e.g., collisions).
If a constant force \$\mathbf{F}\$ acts for a time \$\Delta t\$, the change in momentum is simply
\$\Delta\mathbf{p}= \mathbf{F}\,\Delta t\$
and the final velocity can be found from \$\mathbf{p}=m\mathbf{v}\$.
Problem: A 0.150 kg ball moving at \$8.0\ \text{m s}^{-1}\$ collides head‑on with a 0.250 kg ball at rest. The collision lasts \$0.020\ \text{s}\$ and the average force on each ball during the impact is \$120\ \text{N}\$. Find the final velocities of both balls assuming the collision is perfectly elastic.
\$\mathbf{J}= \mathbf{F}\Delta t = \Delta\mathbf{p}\$
\$120\ \text{N}\times0.020\ \text{s}=m1(v{1f}-8.0)\$
\$-120\ \text{N}\times0.020\ \text{s}=m2(v{2f}-0)\$
(negative sign because the force on ball 2 is opposite in direction.)
\$\frac{1}{2}m1v{1i}^2+\frac{1}{2}m2v{2i}^2=\frac{1}{2}m1v{1f}^2+\frac{1}{2}m2v{2f}^2.\$
| Quantity | Symbol | Definition / Equation | SI Unit |
|---|---|---|---|
| Momentum | \$\mathbf{p}\$ | \$\mathbf{p}=m\mathbf{v}\$ | kg·m·s⁻¹ |
| Force (general) | \$\mathbf{F}\$ | \$\mathbf{F}=d\mathbf{p}/dt\$ | N (kg·m·s⁻²) |
| Impulse | \$\mathbf{J}\$ | \$\mathbf{J}= \int\mathbf{F}\,dt = \Delta\mathbf{p}\$ | kg·m·s⁻¹ (same as momentum) |
| Constant‑force momentum change | \$\Delta\mathbf{p}= \mathbf{F}\Delta t\$ | ||
| Variable‑mass force | \$\mathbf{F}=m\mathbf{a}+\mathbf{v}\,dm/dt\$ |