Published by Patrick Mutisya · 14 days ago
Illustrate the principle that surface‑area‑to‑volume ratios (SA:V) decrease with increasing size by calculating surface areas and volumes of simple three‑dimensional shapes.
For each shape we will derive the formulas for surface area (SA) and volume (V), then calculate SA:V for a series of sizes.
Let \$r\$ be the radius of the sphere.
\$\text{Surface area: } SA_{\text{sphere}} = 4\pi r^{2}\$
\$\text{Volume: } V_{\text{sphere}} = \frac{4}{3}\pi r^{3}\$
Thus the ratio
\$\frac{SA}{V} = \frac{4\pi r^{2}}{\frac{4}{3}\pi r^{3}} = \frac{3}{r}\$
The SA:V is inversely proportional to the radius.
Let \$a\$ be the length of one edge.
\$\text{Surface area: } SA_{\text{cube}} = 6a^{2}\$
\$\text{Volume: } V_{\text{cube}} = a^{3}\$
Ratio
\$\frac{SA}{V} = \frac{6a^{2}}{a^{3}} = \frac{6}{a}\$
Again, SA:V decreases as the edge length increases.
Let \$r\$ be the radius of the base and \$h\$ the height.
\$\text{Surface area: } SA_{\text{cyl}} = 2\pi r^{2} + 2\pi r h\$
\$\text{Volume: } V_{\text{cyl}} = \pi r^{2} h\$
Ratio
\$\$\frac{SA}{V} = \frac{2\pi r^{2} + 2\pi r h}{\pi r^{2} h}
= \frac{2}{h} + \frac{2}{r}\$\$
For a cylinder where \$h = 2r\$ (a common proportion), the ratio simplifies to \$\frac{3}{r}\$, showing the same inverse relationship.
Below are calculated SA, V and SA:V for each shape at three representative sizes.
| Shape | Size Parameter | Surface Area (µm²) | Volume (µm³) | SA : V (µm⁻¹) |
|---|---|---|---|---|
| Sphere | \$r = 5\$ | \$4\pi(5)^{2}=314\$ | \$(4/3)\pi(5)^{3}=524\$ | \$3/5 = 0.60\$ |
| \$r = 10\$ | \$4\pi(10)^{2}=1{,}257\$ | \$(4/3)\pi(10)^{3}=4{,}189\$ | \$3/10 = 0.30\$ | |
| \$r = 20\$ | \$4\pi(20)^{2}=5{,}027\$ | \$(4/3)\pi(20)^{3}=33{,}510\$ | \$3/20 = 0.15\$ | |
| Cube | \$a = 5\$ | \$6(5)^{2}=150\$ | \$(5)^{3}=125\$ | \$6/5 = 1.20\$ |
| \$a = 10\$ | \$6(10)^{2}=600\$ | \$(10)^{3}=1{,}000\$ | \$6/10 = 0.60\$ | |
| \$a = 20\$ | \$6(20)^{2}=2{,}400\$ | \$(20)^{3}=8{,}000\$ | \$6/20 = 0.30\$ | |
| Cylinder (h = 2r) | \$r = 5\$, \$h = 10\$ | \$2\pi(5)^{2}+2\pi(5)(10)=471\$ | \$\pi(5)^{2}(10)=785\$ | \$3/5 = 0.60\$ |
| \$r = 10\$, \$h = 20\$ | \$2\pi(10)^{2}+2\pi(10)(20)=1{,}885\$ | \$\pi(10)^{2}(20)=6{,}283\$ | \$3/10 = 0.30\$ | |
| \$r = 20\$, \$h = 40\$ | \$2\pi(20)^{2}+2\pi(20)(40)=7{,}540\$ | \$\pi(20)^{2}(40)=50{,}265\$ | \$3/20 = 0.15\$ |
In living organisms, the principle explains why:
The calculations above demonstrate mathematically that as a cell (or any 3‑D object) becomes larger, its surface‑area‑to‑volume ratio falls. This geometric constraint underpins many cellular adaptations that maximise exchange with the environment.