Published by Patrick Mutisya · 14 days ago
Be able to express the energy of a photon in electronvolts (eV) and use this unit in calculations of photon energy and momentum.
All of the following equations are exact for a photon:
| Constant | Symbol | Value | Units |
|---|---|---|---|
| Speed of light | c | 2.998 × 10⁸ | m s⁻¹ |
| Planck constant | h | 6.626 × 10⁻³⁴ | J s |
| Reduced Planck constant | ħ | 1.055 × 10⁻³⁴ | J s |
| 1 electronvolt | 1 eV | 1.602 × 10⁻¹⁹ | J |
To convert the photon energy from joules to electronvolts, divide by the conversion factor \$1\;\text{eV}=1.602\times10^{-19}\;\text{J}\$:
\$E\;(\text{eV}) = \frac{E\;(\text{J})}{1.602\times10^{-19}}\$
Combining this with \$E = hc/\lambda\$ gives a convenient formula for wavelength in nanometres:
\$E\;(\text{eV}) = \frac{1240}{\lambda\;(\text{nm})}\$
Similarly, for frequency in terahertz (THz):
\$E\;(\text{eV}) = 4.1357\times10^{-3}\,\nu\;(\text{THz})\$
From \$p = E/c\$, the momentum can be expressed directly in terms of the photon energy:
\$p = \frac{E}{c}\$
When \$E\$ is given in electronvolts, it is often convenient to keep \$c\$ in the denominator, yielding units of eV c⁻¹. Numerically:
\$p\;(\text{eV}\,c^{-1}) = \frac{E\;(\text{eV})}{c\;(=2.998\times10^{8}\,\text{m s}^{-1})} \times (1.602\times10^{-19}\,\text{J/eV})\$
For many problems it is sufficient to use the relation \$p = h/\lambda\$ with \$\lambda\$ in metres.
Problem: Find the energy (in eV) and momentum (in kg·m s⁻¹) of a photon with wavelength \$\lambda = 500\;\text{nm}\$ (green light).
\$E = \frac{hc}{\lambda} = \frac{(6.626\times10^{-34})(2.998\times10^{8})}{500\times10^{-9}} = 3.97\times10^{-19}\;\text{J}\$
\$E\;(\text{eV}) = \frac{3.97\times10^{-19}}{1.602\times10^{-19}} \approx 2.48\;\text{eV}\$
\$p = \frac{E}{c} = \frac{3.97\times10^{-19}}{2.998\times10^{8}} \approx 1.33\times10^{-27}\;\text{kg·m s}^{-1}\$
| Quantity | Formula | Units | Typical Form (eV) |
|---|---|---|---|
| Energy | \$E = h\nu = \dfrac{hc}{\lambda}\$ | J or eV | \$E\;(\text{eV}) = \dfrac{1240}{\lambda\;(\text{nm})}\$ |
| Momentum | \$p = \dfrac{E}{c} = \dfrac{h}{\lambda}\$ | kg·m s⁻¹ | \$p\;(\text{eV}\,c^{-1}) = \dfrac{E\;(\text{eV})}{c}\$ |
| Frequency | \$\nu = \dfrac{c}{\lambda}\$ | Hz | \$E\;(\text{eV}) = 4.1357\times10^{-3}\,\nu\;(\text{THz})\$ |