Published by Patrick Mutisya · 14 days ago
The universal law of gravitation states that any two point masses attract each other with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
\$\$
F = G\frac{m1 m2}{r^{2}}
\$\$
A satellite of mass \$m\$ moving in a circular orbit of radius \$r\$ about the Earth experiences a centripetal force provided entirely by gravity:
\$\$
\frac{m v^{2}}{r}=G\frac{M_{\oplus} m}{r^{2}}
\$\$
where \$M_{\oplus}\$ is the mass of the Earth and \$v\$ is the orbital speed.
Solving for \$v\$ gives the orbital speed:
\$\$
v = \sqrt{\frac{G M_{\oplus}}{r}}
\$\$
The orbital period \$T\$ is the time to complete one revolution:
\$\$
T = \frac{2\pi r}{v}=2\pi\sqrt{\frac{r^{3}}{G M_{\oplus}}}
\$\$
A geostationary satellite remains fixed above a single point on the Earth’s equator. To achieve this, three conditions must be satisfied:
Set \$T = 86\,400\ \text{s}\$ in the period formula and solve for \$r\$:
\$\$
r = \left(\frac{G M_{\oplus} T^{2}}{4\pi^{2}}\right)^{\!1/3}
\$\$
Using \$M_{\oplus}=5.972\times10^{24}\ \text{kg}\$ and \$G=6.674\times10^{-11}\ \text{N m}^{2}\text{kg}^{-2}\$, the calculation yields:
| Parameter | Symbol | Value | Units |
|---|---|---|---|
| Universal gravitational constant | \$G\$ | 6.674 × 10⁻¹¹ | N m² kg⁻² |
| Mass of Earth | \$M_{\oplus}\$ | 5.972 × 10²⁴ | kg |
| Orbital period (geostationary) | \$T\$ | 86 400 | s |
| Geostationary orbital radius | \$r_{\text{geo}}\$ | 42 164 × 10³ | m |
| Geostationary altitude above sea level | \$h_{\text{geo}}\$ | 35 786 × 10³ | m |
The altitude \$h{\text{geo}}\$ is obtained by subtracting Earth’s mean radius \$R{\oplus}=6.371\times10^{6}\ \text{m}\$ from \$r_{\text{geo}}\$.
Because Earth rotates eastward, a satellite must also travel eastward to remain above the same longitude. The required orbital angular velocity \$\omega\$ equals Earth’s rotational angular velocity:
\$\$
\omega = \frac{2\pi}{T}=7.2921\times10^{-5}\ \text{rad s}^{-1}
\$\$