To use the results of the α‑particle scattering experiment to infer the existence and extremely small size of the atomic nucleus, and to integrate this evidence with the wider Cambridge IGCSE/A‑Level syllabus on atoms, nuclei, radiation, fundamental particles and nuclear energetics.
Nuclide (A Z X) notation – A nucleus is written as AZX, where
Example: 23892U represents a uranium nucleus with 92 protons and 146 neutrons (A = 238).
Isotopes – Nuclei of the same element (same Z) but different A.
Example: 23592U and 23892U.
Conservation in nuclear reactions
Protons = uud (charge +1 e); neutrons = udd (charge 0 e).
| Radiation | Particle / Photon | Charge | Rest mass | Typical energy | Common detector |
|---|---|---|---|---|---|
| α | He²⁺ nucleus | +2 e | ≈ 4 u (6.64 × 10⁻²⁷ kg) | 4–9 MeV | ZnS scintillation screen, cloud chamber, solid‑state detector |
| β⁻ | Electron | –1 e | ≈ 5.5 × 10⁻⁴ u (9.11 × 10⁻³¹ kg) | 0–3 MeV (continuous) | Geiger–Müller tube, plastic scintillator |
| β⁺ (positron) | Positron | +1 e | Same as electron | 0–3 MeV (continuous) | Scintillation detector, PET scanner |
| γ | High‑energy photon | 0 | 0 (no rest mass) | 0.1–10 MeV (discrete) | NaI(Tl) crystal, HPGe detector |
\(\displaystyle \Delta m = \bigl(Z mp + (A-Z) mn\bigr) - m_{\text{nucleus}}\).
\(\displaystyle E_b = \Delta m \,c^{2}\) (1 u ≈ 931.5 MeV).
Qualitative sketch (textual description): a bell‑shaped curve starting near 0 MeV / nucleon at A = 1, rising to ≈ 8.8 MeV / nucleon at A ≈ 56, then slowly decreasing to ≈ 7.6 MeV / nucleon for A ≈ 240.
\(\displaystyle ^{2}{1}\!H + ^{3}{1}\!H \;\rightarrow\; ^{4}{2}\!He + ^{1}{0}\!n\)
Δm ≈ 0.018 u → Q ≈ 17.6 MeV.
\(\displaystyle ^{235}{92}\!U + ^{1}{0}\!n \;\rightarrow\; ^{90}{36}\!Kr + ^{143}{56}\!Ba + 3\,^{1}_{0}\!n\)
Δm ≈ 0.186 u → Q ≈ 173 MeV.
If the positive charge were uniformly spread throughout the atom, the internal electric field would be weak and α‑particles would experience only gentle, continuous deflection. The observed large‑angle scattering is impossible under that model.
The differential cross‑section for Coulomb scattering of a particle of charge \(Z{1}e\) by a nucleus of charge \(Z{2}e\) is
\[
\frac{d\sigma}{d\Omega}= \left(\frac{Z{1} Z{2} e^{2}}{16\pi\varepsilon_{0}E}\right)^{2}\frac{1}{\sin^{4}(\theta/2)}
\]
where \(E\) is the kinetic energy of the incident α‑particle and θ the scattering angle.
The impact parameter \(b\) is the perpendicular distance between the initial α‑particle trajectory and the centre of the nucleus. Large‑angle scattering requires \(b\) to be comparable to the nuclear radius \(R\).
Energy conservation gives the distance of closest approach \(r_{\min}\):
\[
\frac{1}{4\pi\varepsilon{0}}\frac{Z{1} Z{2} e^{2}}{r{\min}} = E
\quad\Longrightarrow\quad
r{\min}= \frac{Z{1} Z{2} e^{2}}{4\pi\varepsilon{0}E}
\]
Taking a typical gold foil experiment:
\[
R \lesssim r_{\min}= \frac{(2)(79)(1.60\times10^{-19}\,\text{C})^{2}}
{4\pi(8.85\times10^{-12}\,\text{F m}^{-1})(5\times10^{6}\,\text{eV})(1.60\times10^{-19}\,\text{J eV}^{-1})}
\approx 1.5\times10^{-14}\,\text{m}
\]
This is roughly 10 000 times smaller than a typical atomic radius (≈ 10⁻¹⁰ m), confirming the nucleus’s extreme compactness.
\[
R = r{0}A^{1/3}, \qquad r{0}\approx 1.2\;\text{fm}\;(1\;\text{fm}=10^{-15}\,\text{m})
\]
The relation fits the order‑of‑magnitude estimate from Rutherford scattering for all known nuclei.
| Process | Equation (A Z X) | Δm (u) | Q‑value (MeV) |
|---|---|---|---|
| α‑decay | \(^{238}{92}\!U \rightarrow ^{234}{90}\!Th + ^{4}_{2}\!He\) | ≈ 0.005 | ≈ 4.27 |
| β⁻‑decay | \(^{14}{6}\!C \rightarrow ^{14}{7}\!N + e^- + \bar{\nu}_e\) | ≈ 0 | 0.156 (continuous) |
| β⁺‑decay | \(^{22}{11}\!Na \rightarrow ^{22}{10}\!Ne + e^+ + \nu_e\) | ≈ 0 | 2.84 (continuous) |
| Electron capture | \(^{40}{20}\!Ca + e^- \rightarrow ^{40}{19}\!K + \nu_e\) | ≈ 0 | 1.31 |
| γ‑emission | \(^{60}{27}\!Co^{*} \rightarrow ^{60}{27}\!Co + \gamma\) | ≈ 0 | 1.17 |
| Fusion (D‑T) | \(^{2}{1}\!H + ^{3}{1}\!H \rightarrow ^{4}{2}\!He + ^{1}{0}\!n\) | ≈ 0.018 | ≈ 17.6 |
| Fission (U‑235) | \(^{235}{92}\!U + ^{1}{0}\!n \rightarrow ^{90}{36}\!Kr + ^{143}{56}\!Ba + 3\,^{1}_{0}\!n\) | ≈ 0.186 | ≈ 173 |
| Radiation | Charge | Mass (relative) | Penetrating power |
|---|---|---|---|
| α | +2 e | ≈ 4 u | Very low (stopped by paper) |
| β⁻ | –1 e | ≈ 5.5 × 10⁻⁴ u | Moderate (few mm Al) |
| β⁺ | +1 e | ≈ 5.5 × 10⁻⁴ u | Similar to β⁻, plus annihilation γ‑rays |
| γ | 0 | 0 | High (requires dense shielding) |
| Quantity | Typical value | Units |
|---|---|---|
| Atomic radius (a) | ≈ 1 × 10⁻¹⁰ | m |
| Nuclear radius (R, gold estimate) | ≈ 1.5 × 10⁻¹⁴ | m |
| Ratio a : R | ≈ 10⁴ : 1 | – |
Peak ≈ 8.8 MeV / nucleon at A ≈ 56 (Fe‑56); decreases slowly for heavier nuclei, explaining the energy release in both fusion (light nuclei) and fission (heavy nuclei).
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.