Published by Patrick Mutisya · 14 days ago
The mass defect of a nucleus is the difference between the sum of the masses of its constituent nucleons and the actual mass of the nucleus.
\$\Delta m = Z\,mp + N\,mn - m_{\text{nucleus}}\$
where:
The binding energy is the energy required to separate a nucleus into its individual nucleons. By Einstein’s mass‑energy equivalence:
\$E_{\text{b}} = \Delta m\,c^{2}\$
where \$c\$ is the speed of light in vacuum (\$c = 3.00\times10^{8}\,\text{m s}^{-1}\$).
To compare nuclei of different sizes we use the binding energy per nucleon:
\$\frac{E{\text{b}}}{A} = \frac{E{\text{b}}}{Z+N}\$
This quantity indicates how tightly, on average, each nucleon is bound within the nucleus.
| Nuclide | Mass Number \$A\$ | Binding Energy \$E_{\text{b}}\$ (MeV) | Binding Energy per Nucleon \$E_{\text{b}}/A\$ (MeV) |
|---|---|---|---|
| Hydrogen‑1 (\$^{1}\!\$H) | 1 | 0 | 0 |
| Helium‑4 (\$^{4}\!\$He) | 4 | 28.3 | 7.07 |
| Carbon‑12 (\$^{12}\!\$C) | 12 | 92.2 | 7.68 |
| Iron‑56 (\$^{56}\!\$Fe) | 56 | 492.3 | 8.79 |
| Uranium‑238 (\$^{238}\!\$U) | 238 | 1801.6 | 7.57 |
The shape of the binding‑energy curve explains why certain nuclear processes release energy:
Thus, the difference in binding energy per nucleon before and after a reaction directly gives the energy output:
\$Q = \left(\frac{E{\text{b}}}{A}\right){\text{final}}A{\text{final}} - \left(\frac{E{\text{b}}}{A}\right){\text{initial}}A{\text{initial}}\$
Fusion combines two light nuclei to form a heavier nucleus. Example: the fusion of deuterium (\$^{2}\!\$H) and tritium (\$^{3}\!\$H) to produce helium‑4 and a neutron.
\$^{2}\!{\rm H} + ^{3}\!{\rm H} \rightarrow ^{4}\!{\rm He} + n + Q\$
Using binding‑energy data:
Because \$E_{\text{b}}/A\$ for \$^{4}\!\$He (≈7.07 MeV) is greater than the average for \$^{2}\!\$H and \$^{3}\!\$H (≈1–2 MeV), the reaction releases about \$17.6\,\$MeV.
Fission splits a heavy nucleus into lighter fragments, each with a higher \$E_{\text{b}}/A\$ than the original heavy nucleus.
Typical example: neutron‑induced fission of uranium‑235.
\$^{235}\!{\rm U} + n \rightarrow ^{92}\!{\rm Kr} + ^{141}\!{\rm Ba} + 3n + Q\$
Using the table values (or more detailed data):
The increase in total binding energy corresponds to an energy release of roughly \$200\,\$Me \cdot per fission event.