Published by Patrick Mutisya · 14 days ago
Recall and use the formula
\$E = \frac{1}{2}\,m\,\omega^{2}\,x_{0}^{2}\$
for the total mechanical energy of a system undergoing simple harmonic motion (SHM).
For a mass‑spring system:
\$K = \frac{1}{2}mv^{2}, \qquad U = \frac{1}{2}kx^{2}\$
Using \$k = m\omega^{2}\$, the potential energy becomes
\$U = \frac{1}{2}m\omega^{2}x^{2}.\$
The displacement and velocity in SHM are
\$x(t)=x{0}\cos(\omega t), \qquad v(t) = -\omega x{0}\sin(\omega t).\$
Substituting \$v(t)\$ into \$K\$ gives
\$K = \frac{1}{2}m\omega^{2}x_{0}^{2}\sin^{2}(\omega t).\$
Similarly, substituting \$x(t)\$ into \$U\$ gives
\$U = \frac{1}{2}m\omega^{2}x_{0}^{2}\cos^{2}(\omega t).\$
The total energy is therefore
\$E = K + U = \frac{1}{2}m\omega^{2}x{0}^{2}\bigl[\sin^{2}(\omega t)+\cos^{2}(\omega t)\bigr] = \frac{1}{2}m\omega^{2}x{0}^{2}.\$
Since \$\sin^{2}\theta + \cos^{2}\theta = 1\$, the total energy is constant and independent of time.
| Position \$x\$ | Velocity \$v\$ | Kinetic Energy \$K\$ | Potential Energy \$U\$ | Total Energy \$E\$ |
|---|---|---|---|---|
| \$x = 0\$ (equilibrium) | \$v = \pm\omega x_{0}\$ | \$\dfrac{1}{2}m\omega^{2}x_{0}^{2}\$ | \$0\$ | \$\dfrac{1}{2}m\omega^{2}x_{0}^{2}\$ |
| \$x = \pm x_{0}\$ (amplitude) | \$v = 0\$ | \$0\$ | \$\dfrac{1}{2}m\omega^{2}x_{0}^{2}\$ | |
| \$x = \pm \dfrac{x_{0}}{\sqrt{2}}\$ | \$v = \pm \dfrac{\omega x_{0}}{\sqrt{2}}\$ | \$\dfrac{1}{4}m\omega^{2}x_{0}^{2}\$ | \$\dfrac{1}{4}m\omega^{2}x_{0}^{2}\$ |
Problem: A 0.25 kg mass is attached to a spring with \$k = 100\ \text{N m}^{-1}\$. The mass is pulled 5 cm from equilibrium and released. Find the total mechanical energy of the system.
\$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{100}{0.25}} = \sqrt{400} = 20\ \text{rad s}^{-1}.\$
\$\$E = \frac{1}{2} m \omega^{2} x_{0}^{2}
= \frac{1}{2}(0.25)(20)^{2}(0.05)^{2}
= 0.125 \times 400 \times 0.0025
= 0.125\ \text{J}.\$\$
Answer: \$E = 0.125\ \text{J}\$ (the energy remains constant throughout the motion).