Published by Patrick Mutisya · 14 days ago
Linear momentum \$\mathbf{p}\$ of a particle of mass \$m\$ moving with velocity \$\mathbf{v}\$ is defined as
\$\mathbf{p}=m\mathbf{v}.\$
For a system of \$N\$ particles, the total momentum is the vector sum
\$\mathbf{P} = \sum{i=1}^{N} mi \mathbf{v}_i.\$
Newton’s second law can be written as
\$\mathbf{F}_{\text{net}} = \frac{d\mathbf{p}}{dt}.\$
If the net external force on a closed system is zero, then
\$\frac{d\mathbf{P}}{dt}=0 \quad\Longrightarrow\quad \mathbf{P}{\text{initial}} = \mathbf{P}{\text{final}}.\$
This is the law of conservation of linear momentum.
Collisions are classified according to the change in kinetic energy:
| Case | Initial Momentum | Final Momentum | Initial KE | Final KE |
|---|---|---|---|---|
| Elastic | \$\mathbf{P}_i\$ | \$\mathbf{P}_i\$ | \$K_i\$ | \$K_i\$ |
| Inelastic | \$\mathbf{P}_i\$ | \$\mathbf{P}_i\$ | \$K_i\$ | \$Kf < Ki\$ |
| Perfectly inelastic | \$\mathbf{P}_i\$ | \$\mathbf{P}_i\$ | \$K_i\$ | \$Kf \ll Ki\$ |
Consider two masses \$m1\$ and \$m2\$ moving along a line with initial velocities \$u1\$ and \$u2\$. Using conservation of momentum and kinetic energy:
\$m1 u1 + m2 u2 = m1 v1 + m2 v2,\$
\$\frac{1}{2}m1 u1^2 + \frac{1}{2}m2 u2^2 = \frac{1}{2}m1 v1^2 + \frac{1}{2}m2 v2^2.\$
Solving these equations gives
\$v1 = \frac{(m1 - m2)u1 + 2m2 u2}{m1 + m2},\$
\$v2 = \frac{(m2 - m1)u2 + 2m1 u1}{m1 + m2}.\$
If the two bodies stick together after impact, let the common final velocity be \$v\$. Conservation of momentum gives
\$(m1 + m2) v = m1 u1 + m2 u2 \quad\Longrightarrow\quad v = \frac{m1 u1 + m2 u2}{m1 + m2}.\$
The loss of kinetic energy is
\$\Delta K = \frac{1}{2}\frac{m1 m2}{m1 + m2}(u1 - u2)^2,\$
which is always non‑negative, showing that kinetic energy decreases (or remains unchanged) in an inelastic collision.