Published by Patrick Mutisya · 14 days ago
Understand that isotopes of an element may be radioactive because they contain an excess of neutrons in the nucleus and/or because the nucleus is too heavy.
Two main reasons make a nucleus unstable:
| Decay Type | Particle Emitted | Change in Nucleus | Typical Occurrence |
|---|---|---|---|
| Alpha (\$\alpha\$) decay | Helium nucleus \$^{4}_{2}\mathrm{He}\$ | \$^{A}{Z}\mathrm{X} \;\rightarrow\; ^{A-4}{Z-2}\mathrm{Y} + ^{4}_{2}\mathrm{He}\$ | Heavy nuclei (e.g., \$^{238}_{92}\mathrm{U}\$) |
| Beta minus (\$\beta^{-}\$) decay | Electron \$e^{-}\$ (and antineutrino \$\bar{\nu}\$) | \$^{A}{Z}\mathrm{X} \;\rightarrow\; ^{A}{Z+1}\mathrm{Y} + e^{-} + \bar{\nu}\$ | Neutron‑rich nuclei (e.g., \$^{14}_{6}\mathrm{C}\$) |
| Beta plus (\$\beta^{+}\$) decay | Positron \$e^{+}\$ (and neutrino \$\nu\$) | \$^{A}{Z}\mathrm{X} \;\rightarrow\; ^{A}{Z-1}\mathrm{Y} + e^{+} + \nu\$ | Proton‑rich nuclei (rare in nature) |
| Gamma (\$\gamma\$) emission | High‑energy photon | Excited nucleus \$^{*A}{Z}\mathrm{X} \;\rightarrow\; ^{A}{Z}\mathrm{X} + \gamma\$ | Often follows \$\alpha\$ or \$\beta\$ decay |
The stable \$N/Z\$ ratio increases with atomic number. Approximate ranges are:
If an isotope’s actual \$N/Z\$ lies outside the stable range, it will tend to undergo a decay process that moves the ratio toward the stable region.
| Isotope | Atomic Number (\$Z\$) | Neutron Number (\$N\$) | Decay Mode | Reason for Instability |
|---|---|---|---|---|
| \$^{14}_{6}\mathrm{C}\$ | 6 | 8 | \$\beta^{-}\$ | Excess neutrons (ratio \$N/Z = 1.33\$ > stable for \$Z=6\$) |
| \$^{238}_{92}\mathrm{U}\$ | 92 | 146 | \$\alpha\$ | Very heavy nucleus; strong proton repulsion |
| \$^{90}_{38}\mathrm{Sr}\$ | 38 | 52 | \$\beta^{-}\$ | Neutron‑rich relative to stable Sr isotopes |
| \$^{210}_{82}\mathrm{Pb}\$ | 82 | 128 | \$\alpha\$ | Heavy nucleus, close to the limit of stability |
The half‑life (\$t_{1/2}\$) is the time required for half of a sample of radioactive nuclei to decay. It is related to the decay constant (\$\lambda\$) by:
\$ t_{1/2} = \frac{\ln 2}{\lambda} \$
Half‑lives can range from fractions of a second to billions of years, reflecting the wide range of nuclear stability.