\[
\mathbf{F}_{\text{net}}=\frac{d\mathbf{p}}{dt}.
\]
For a body of constant mass this reduces to the familiar form \(\mathbf{F}=m\mathbf{a}\).
A 2 kg block slides on a frictionless horizontal table. A constant horizontal force of 6 N acts on it for 3 s. Find the final speed if the block starts from rest.
\[
\mathbf{F}=m\mathbf{a}\;\Rightarrow\;a=\frac{F}{m}= \frac{6}{2}=3\;\text{m s}^{-2}.
\]
\[
v = a t = 3\times3 = 9\;\text{m s}^{-1}.
\]
Momentum after 3 s: \(p = mv = 2\times9 = 18\;\text{kg m s}^{-1}\).
A 5 kg cart moving at 4 m s⁻¹ is brought to rest by a constant braking force applied for 0.8 s. Find the magnitude of the braking force.
\[
\Delta p = m(vf - vi)=5(0-4)=-20\;\text{kg m s}^{-1}.
\]
\[
J = |\Delta p| = 20\;\text{N·s}=F\Delta t \;\Rightarrow\;F=\frac{20}{0.8}=25\;\text{N}.
\]
One‑dimensional elastic collision between masses \(m1\) and \(m2\) (initial speeds \(v1, v2\)):
\[
v1'=\frac{m1-m2}{m1+m2}\,v1+\frac{2m2}{m1+m2}\,v2,\qquad
v2'=\frac{2m1}{m1+m2}\,v1+\frac{m2-m1}{m1+m2}\,v2.
\]
Perfectly inelastic (bodies stick together):
\[
v'=\frac{m1v1+m2v2}{m1+m2}.
\]
Two blocks: \(m1=2\;\text{kg}\) with \(v1=4\;\text{m s}^{-1}\) and \(m_2=3\;\text{kg}\) initially at rest.
\[
v_1'=\frac{2-3}{2+3}\times4=-0.8\;\text{m s}^{-1},\qquad
v_2'=\frac{2\times2}{5}\times4=3.2\;\text{m s}^{-1}.
\]
A 1 kg cart at 2 m s⁻¹ collides with a 2 kg cart at rest and sticks together.
\[
v'=\frac{1\times2+2\times0}{1+2}= \frac{2}{3}\;\text{m s}^{-1}.
\]
Child A: \(m=30\;\text{kg}\) sits 1.5 m from the pivot. Child B: \(m=20\;\text{kg}\) sits on the opposite side at distance \(x\).
\[
30g(1.5)=20g\,x\;\Rightarrow\;x=\frac{30\times1.5}{20}=2.25\;\text{m}.
\]
Mass per unit volume:
\[
\rho=\frac{m}{V}\qquad\text{Units: kg m}^{-3}.
\]
Force per unit area (scalar):
\[
p=\frac{F}{A}\qquad\text{Units: Pa = N m}^{-2}.
\]
Pressure at depth \(h\) in a fluid of density \(\rho\):
\[
p = p_0 + \rho g h,
\]
where \(p_0\) is the pressure at the free surface (often atmospheric). The relation is linear with depth.
Dynamic pressure (kinetic energy per unit volume of a moving fluid):
\[
p_{\text{dyn}}=\frac{1}{2}\rho v^{2}.
\]
For an ideal, incompressible, non‑viscous flow:
\[
p_{\text{static}}+\frac{1}{2}\rho v^{2}+ \rho g h = \text{constant}.
\]
When a fluid of density \(\rho\) and speed \(v\) strikes a surface and is brought to rest, the force exerted is
\[
F = \dot{m} v = \rho A v^{2},
\]
where \(\dot{m}= \rho A v\) is the mass‑flow rate and \(A\) the cross‑sectional area.
Water jet: \(\rho = 1000\;\text{kg m}^{-3}\), area \(A = 0.01\;\text{m}^{2}\), speed \(v = 20\;\text{m s}^{-1}\).
\[
F = \rho A v^{2}= 1000\times0.01\times20^{2}= 4000\;\text{N}.
\]
When the downward weight equals the upward drag, the net force is zero and the object moves at constant speed \(v_t\).
\[
mg = \tfrac{1}{2}CD \rho A vt^{2}\quad\Rightarrow\quad vt = \sqrt{\frac{2mg}{CD \rho A}}.
\]
Mass \(m = 80\;\text{kg}\), \(C_D = 1.0\), cross‑sectional area \(A = 0.7\;\text{m}^{2}\), air density \(\rho = 1.2\;\text{kg m}^{-3}\).
\[
vt = \sqrt{\frac{2mg}{CD \rho A}}
= \sqrt{\frac{2\times80\times9.81}{1.0\times1.2\times0.7}}
\approx 53\;\text{m s}^{-1}.
\]
| Quantity | Symbol | Units | Formula |
|---|---|---|---|
| Linear momentum | \(\mathbf{p}\) | kg·m·s⁻¹ | \(\mathbf{p}=m\mathbf{v}\) |
| Impulse | \(\mathbf{J}\) | N·s | \(\displaystyle\mathbf{J}= \int\mathbf{F}\,dt\) |
| Force (Newton’s 2nd law) | \(\mathbf{F}\) | N | \(\displaystyle\mathbf{F}= \frac{d\mathbf{p}}{dt}=m\mathbf{a}\) |
| Moment (torque) | \(\boldsymbol{\tau}\) | N·m | \(\boldsymbol{\tau}= \mathbf{r}\times\mathbf{F}\) |
| Density | \(\rho\) | kg·m⁻³ | \(\rho=m/V\) |
| Pressure | \(p\) | Pa (N·m⁻²) | \(p=F/A\) |
| Hydrostatic pressure | \(p\) | Pa | \(p=p_0+\rho g h\) |
| Dynamic pressure | \(p_{\text{dyn}}\) | Pa | \(p_{\text{dyn}}=\tfrac{1}{2}\rho v^{2}\) |
| Bernoulli constant | – | Pa | \(p_{\text{static}}+\tfrac{1}{2}\rho v^{2}+\rho g h = \text{constant}\) |
| Force from fluid momentum flux | \(F\) | N | \(F=\rho A v^{2}\) |
| Linear drag | \(F_{\text{drag}}\) | N | \(F_{\text{drag}} = k v\) |
| Quadratic drag | \(F_{\text{drag}}\) | N | \(F{\text{drag}} = \tfrac{1}{2}CD \rho A v^{2}\) |
| Terminal velocity (quadratic drag) | \(v_t\) | m·s⁻¹ | \(vt = \sqrt{\dfrac{2mg}{CD \rho A}}\) |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.