Published by Patrick Mutisya · 14 days ago
Linear momentum is a vector quantity that describes the motion of an object. It is defined as the product of an object's mass and its velocity:
\$\mathbf{p}=m\mathbf{v}\$
In an isolated system (no external forces), the total linear momentum before an interaction equals the total linear momentum after the interaction:
\$\sum \mathbf{p}{\text{initial}}=\sum \mathbf{p}{\text{final}}\$
\$\mathbf{J}=\Delta \mathbf{p}=\int \mathbf{F}\,dt\$
Force is related to the rate of change of momentum:
\$\mathbf{F}=\frac{d\mathbf{p}}{dt}\$
In fluid mechanics, density and pressure play a key role in momentum transfer:
\$\rho=\frac{m}{V}\$
\$p=\frac{F}{A}\$
\$p=p_0+\rho g h\$
\$p_{\text{dynamic}}=\frac{1}{2}\rho v^2\$
These relations are essential when analysing forces on submerged bodies, fluid jets, and gas flows.
Example 1: Two blocks of masses \$m1\$ and \$m2\$ collide on a frictionless surface. If block 1 moves with velocity \$v_1\$ and block 2 is initially at rest, the final velocities after an elastic collision are:
\$v1'=\frac{m1-m2}{m1+m2}v1,\qquad v2'=\frac{2m1}{m1+m2}v_1\$
Example 2: A water jet of density \$\rho\$ and velocity \$v\$ strikes a flat plate. The force exerted on the plate is the rate of change of momentum:
\$F=\dot{m}v=\rho A v^2\$
where \$A\$ is the cross‑sectional area of the jet.
| Quantity | Symbol | Units | Formula |
|---|---|---|---|
| Linear momentum | \$\mathbf{p}\$ | kg·m/s | \$m\mathbf{v}\$ |
| Impulse | \$\mathbf{J}\$ | N·s | \$\int \mathbf{F}\,dt\$ |
| Density | \$\rho\$ | kg/m³ | \$m/V\$ |
| Pressure | \$p\$ | Pa (N/m²) | \$F/A\$ |
| Hydrostatic pressure | \$p\$ | Pa | \$p_0+\rho g h\$ |
| Dynamic pressure | \$p_{\text{dyn}}\$ | Pa | \$\frac{1}{2}\rho v^2\$ |