interpret and construct genetic diagrams, including Punnett squares, to explain and predict the results of monohybrid crosses and dihybrid crosses that involve dominance, codominance, multiple alleles and sex linkage
Cambridge A-Level Biology 9700 – The Roles of Genes in Determining the Phenotype
Objective
Interpret and construct genetic diagrams, including Punnett squares, to explain and predict the results of monohybrid and dihybrid crosses that involve:
Complete dominance
Codominance
Incomplete (partial) dominance
Multiple alleles
Sex‑linked inheritance
1. Genes, Alleles and Phenotype
A gene is a segment of DNA that encodes a particular trait. Different versions of a gene are called alleles. The combination of alleles an individual possesses (its genotype) determines the observable characteristics (phenotype).
Key points:
Organisms are diploid for autosomal chromosomes – they carry two alleles per gene.
Alleles can be dominant or recessive. A dominant allele masks the effect of a recessive allele in a heterozygote.
Other patterns of interaction include codominance, incomplete dominance, multiple alleles and sex‑linkage.
1.1 Types of Allelic Interaction
Complete dominance:\$A\$ (dominant) masks \$a\$ (recessive). \$AA\$ and \$Aa\$ give the same phenotype.
Cross: \$AaBb \times AaBb\$ (heterozygous for two traits).
Each parent can produce \$2^2 = 4\$ types of gametes: \$AB\$, \$Ab\$, \$aB\$, \$ab\$.
Gametes from Parent 2
Gametes from Parent 1
\$AB\$
\$Ab\$
\$aB\$
\$ab\$
\$AB\$
\$AABB\$
\$AABb\$
\$AaBB\$
\$AaBb\$
\$Ab\$
\$AABb\$
\$AAbb\$
\$AaBb\$
\$Aabb\$
\$aB\$
\$AaBB\$
\$AaBb\$
\$aaBB\$
\$aaBb\$
\$ab\$
\$AaBb\$
\$Aabb\$
\$aaBb\$
\$aabb\$
Genotype ratio (simplified): \$9\:A\B\ : 3\:A\bb : 3\:aaB\ : 1\:aabb\$
Phenotype ratio (dominant for both traits): \$9\:both\ dominant : 3\:dominant\ trait\ 1\ only : 3\:dominant\ trait\ 2\ only : 1\:recessive\ for\ both\$
2.5 Sex‑Linked Monohybrid Cross
Example: Red‑green colour blindness (X‑linked recessive, allele \$c\$). Cross a carrier female (\$X^CX^c\$) with a normal male (\$X^CY\$).
Gametes
\$X^C\$
\$X^c\$
\$X^C\$
\$X^CX^C\$ (female, normal)
\$X^CX^c\$ (female, carrier)
\$Y\$
\$X^CY\$ (male, normal)
\$X^cY\$ (male, colour‑blind)
Result:
Females: 50 % normal, 50 % carriers.
Males: 50 % normal, 50 % colour‑blind.
3. Interpreting Genetic Diagrams
When analysing a Punnett square, follow these steps:
Identify the genotype of each parent.
List all possible gametes each parent can produce (considering segregation and independent assortment).
Combine gametes in a grid to obtain offspring genotypes.
Convert genotypes to phenotypes using the appropriate dominance relationship.
Count the number of each genotype/phenotype to obtain ratios or percentages.
4. Common Pitfalls
Assuming all traits assort independently – linkage can alter ratios.
Confusing genotype with phenotype, especially in codominance or multiple‑allele systems.
For sex‑linked traits, remembering that males have only one X chromosome (hemizygous).
Neglecting the possibility of lethal genotypes that do not survive to birth.
5. Practice Problems
Construct a Punnett square for a dihybrid cross \$AaBb \times aaBB\$ and state the phenotypic ratio.
In a population where \$I^A\$, \$I^B\$, and \$i\$ are present, predict the offspring blood types from a cross \$I^AI^B \times I^Ai\$.
Show the expected results of a cross between a colour‑blind male (\$X^cY\$) and a carrier female (\$X^CX^c\$).
Explain why a cross between two heterozygous pea plants for flower colour (\$Rr \times Rr\$) can produce a 1:2:1 phenotypic ratio when incomplete dominance is involved.
Suggested diagram: A 4×4 Punnett square for the dihybrid cross \$AaBb \times AaBb\$ showing genotype combinations.
Suggested diagram: Pedigree chart illustrating X‑linked inheritance of colour blindness across three generations.