ω = 2π ⁄ T = 2π f and v = r ω.
\[
\theta\;(\text{rad})=\frac{s}{r}
\]
where s is the arc length and r the radius.
\[
\omega=\frac{\Delta\theta}{\Delta t}\;(\text{rad s}^{-1})
\]
For uniform circular motion a full revolution gives Δθ = 2π rad, so
\[
\boxed{\omega=\frac{2\pi}{T}=2\pi f}
\]
Although many Cambridge 9702 problems treat ω as a scalar, it is fundamentally a vector directed along the axis of rotation. Its direction is given by the right‑hand rule:
Key points
The distance travelled along the circumference in one period is the circumference, \(2\pi r\). Hence
\[
v=\frac{2\pi r}{T}
\]
Substituting the definition of ω gives the compact relationship
\[
\boxed{v=r\omega}
\]
Thus, for a fixed radius, linear speed is directly proportional to angular speed.
| Quantity | Symbol | Conversion |
|---|---|---|
| Revolutions per minute | n (rpm) | \(\displaystyle \omega\;(\text{rad s}^{-1})=\frac{2\pi n}{60}\) |
| Angular speed | \(\omega\) (rad s⁻¹) | \(\displaystyle f\;(\text{Hz})=\frac{\omega}{2\pi}\) |
| Frequency | f (Hz) | \(\displaystyle n\;(\text{rpm})=60f\) |
Numerical reminders:
Problem: A motor runs at 1800 rpm. Find (a) the angular speed ω in rad s⁻¹ and (b) the linear speed of a point 0.05 m from the shaft.
Solution:
\[
\omega=\frac{2\pi\times1800}{60}=2\pi\times30=60\pi\;\text{rad s}^{-1}\approx 188.5\;\text{rad s}^{-1}.
\]
\[
v=r\omega=0.05\times188.5\approx 9.4\;\text{m s}^{-1}.
\]
Uniform circular motion requires a continuous change of direction, producing a centripetal (inward) acceleration.
\[
\boxed{a_c=r\omega^{2}=\frac{v^{2}}{r}}
\]
The corresponding net inward force on a mass m is
\[
\boxed{Fc=m ac=m r\omega^{2}= \frac{m v^{2}}{r}}
\]
These expressions are used in the next syllabus sub‑topic (12.2 – Forces in circular motion).
Radius \(r=50\;\text{m}\), period \(T=20\;\text{s}\).
Mass \(m=0.20\;\text{kg}\), radius \(r=0.75\;\text{m}\), angular speed \(\omega=8.0\;\text{rad s}^{-1}\).
Turntable rotates at 120 rpm; point of interest is 0.15 m from the centre.
| Quantity | Symbol | Formula | Units |
|---|---|---|---|
| Radian | θ | \(\displaystyle \theta=\frac{s}{r}\) | rad |
| Period | T | Time for one revolution | s |
| Frequency | f | \(\displaystyle f=\frac{1}{T}\) | Hz (s⁻¹) |
| Angular speed | ω | \(\displaystyle \omega=\frac{2\pi}{T}=2\pi f\) | rad s⁻¹ |
| Linear (tangential) speed | v | \(\displaystyle v=r\omega=\frac{2\pi r}{T}\) | m s⁻¹ |
| Centripetal acceleration | ac | \(\displaystyle ac=r\omega^{2}= \frac{v^{2}}{r}\) | m s⁻² |
| Centripetal force | Fc | \(\displaystyle Fc=m r\omega^{2}= \frac{m v^{2}}{r}\) | N |
Blue line = radius r; orange line = tangential speed v; green arc = angular displacement Δθ.
Calculate its orbital period T.
Answer: \(T=\dfrac{2\pi}{\omega}= \dfrac{2\pi}{1.1\times10^{-3}}\approx5.7\times10^{3}\ \text{s}\) (≈ 1.6 h).
(a) Convert this to angular speed in rad s⁻¹.
(b) Find the linear speed of a point \(0.15\ \text{m}\) from the centre.
Solution: (a) \(\omega=\dfrac{2\pi\times120}{60}=4\pi\ \text{rad s}^{-1}\approx12.57\ \text{rad s}^{-1}\).
(b) \(v=r\omega=0.15\times12.57\approx1.89\ \text{m s}^{-1}\).
Determine the required centripetal force.
Answer: \(F_c=\dfrac{m v^{2}}{r}= \dfrac{0.25\times5^{2}}{0.60}=10.4\ \text{N}\).
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.