1.2 Multimedia – Sampling Rate, Resolution & Image Types
Learning Objective
Show understanding of the impact of changing the sampling rate and resolution on:
Perceived quality of audio and video
File size and storage requirements
Transmission bandwidth and processing load
Choice between bitmap and vector graphics for a given task
0. Cambridge Computer Science (9618) – Syllabus Overview & AO Alignment
Syllabus Unit
Key Topics Covered
Assessment Objectives (AO)
1 Data representation
Binary, hexadecimal, BCD, two’s‑complement, floating‑point, colour depth, sampling rate
AO1, AO2
2 Communication & networks
Bandwidth, latency, OSI model, protocols, data compression, error detection
AO1, AO2, AO3
3 Hardware
CPU, registers, ALU, cache, memory hierarchy, storage devices
AO1, AO2
4 System software
Operating systems, utility software, virtual machines
AO1, AO3
5 Security & ethics
Encryption, authentication, privacy, legal & moral issues
AO2, AO3
6 Databases
Relational model, SQL, normalisation, CRUD operations
AO1, AO2, AO3
7 Algorithms & data structures
Searching, sorting, trees, linked lists, complexity (Big‑O)
AO1, AO2, AO3
8 Programming
Structured programming, OOP concepts, recursion, exception handling
AO1, AO2, AO3
9 Software development
SDLC, testing, documentation, version control
AO2, AO3
10 Multimedia (this unit)
Sampling, colour depth, bitmap vs. vector, video bitrate
AO1, AO2, AO3
11 Emerging technologies (A‑level)
Artificial intelligence, virtualisation, cloud computing
AO2, AO3
12 Problem solving & computational thinking (A‑level)
Algorithm design, abstraction, decomposition, pattern‑recognition
AO1, AO2, AO3
1. Key Concepts for the Whole Syllabus
Computational thinking – decomposition, pattern‑recognition, abstraction, algorithmic design.
Data representation – binary, hexadecimal, BCD, two’s‑complement, floating‑point, colour models, audio/video sampling.
Communication – bandwidth, latency, protocols, OSI model, error detection/correction.
Hardware fundamentals – CPU, registers, ALU, cache, main memory, secondary storage.
System software – operating systems, virtual machines, utilities.
Security & ethics – encryption, authentication, privacy, legal frameworks.
Databases – relational model, SQL, normalisation.
Algorithms & data structures – searching, sorting, linked lists, trees, complexity.
Programming paradigms – structured, object‑oriented, recursion, exception handling.
Software development lifecycle – planning, design, implementation, testing, maintenance.
2. Core AS Topics (Units 1‑12) – Concise Reference
2.1 Data Representation
Binary ↔ Decimal : 101101₂ = 1·2⁵ + 0·2⁴ + 1·2³ + 1·2² + 0·2¹ + 1·2⁰ = 45₁₀
Hexadecimal : Group binary in fours. 1011 0110₂ = B6₁₆.
BCD (Binary‑Coded Decimal) : Each decimal digit stored as 4‑bit binary (e.g., 27 → 0010 0111).
Two’s‑complement (8‑bit) example : –23 → 23₁₀ = 0001 0111₂ → invert → 1110 1000 → add 1 → 1110 1001₂.
Overflow illustration : 200₁₀ + 100₁₀ = 300₁₀ → 100101100₂ (9 bits). In an 8‑bit unsigned register it wraps to 00101100₂ = 44₁₀ (overflow).
Floating‑point (IEEE 754 single precision) : 1 bit sign, 8 bit exponent (bias 127), 23 bit mantissa.
2.2 Communication & Networks
OSI Layer
Function
Typical Protocols
1 Physical Transmission media, signalling Ethernet, Wi‑Fi
2 Data Link Framing, MAC addressing, error detection ARP, PPP
3 Network Routing, logical addressing IP, ICMP
4 Transport Segmentation, reliability TCP, UDP
5‑7 Session‑Presentation‑Application Session control, data representation, user services HTTP, FTP, SMTP
Bandwidth vs. latency : Bandwidth is the maximum data rate (bits s⁻¹); latency is the time for a single bit to travel from source to destination. High‑definition video needs both high bandwidth and low latency for smooth streaming.
2.3 Hardware
CPU cycle : Fetch → Decode → Execute → Write‑back.
Registers : General‑purpose, program counter, status register.
Cache hierarchy : L1 (fastest, smallest) → L2 → L3; reduces average memory access time.
Memory addressing : Byte‑addressable; 32‑bit address space → 4 GB maximum.
Secondary storage : HDD (magnetic), SSD (flash), optical (CD/DVD), each with characteristic access time and capacity.
2.4 System Software
Operating system – manages processes, memory, I/O, file systems; provides API to applications.
Virtual machines – abstract hardware (e.g., Java Virtual Machine) enabling platform independence.
Utility software – backup, antivirus, compression tools.
2.5 Security & Ethics
Symmetric encryption – same key for encrypt/decrypt (e.g., AES).
Asymmetric encryption – public/private key pair (e.g., RSA).
Authentication – passwords, biometrics, two‑factor.
Legal/ethical issues – copyright, data protection (GDPR), cyber‑bullying.
2.6 Databases
Relational model – tables (relations), primary keys, foreign keys.
SQL basics : SELECT … FROM … WHERE …, INSERT, UPDATE, DELETE.
Normalisation – eliminate redundancy (1NF, 2NF, 3NF).
2.7 Algorithms & Data Structures
Structure / Algorithm
Typical Operations
Complexity (Big‑O)
Array Index access, linear search O(1) access, O(n) search
Linked list Insertion/deletion at ends O(1) insert/delete, O(n) search
Binary search tree Ordered insert, lookup O(log n) average, O(n) worst‑case
Sorting (quick‑sort) Arrange data in order O(n log n) average, O(n²) worst
2.8 Programming (Structured & OOP)
Control structures – sequence, selection (if/else, switch), iteration (for, while).
Procedures / functions – modularise code, pass parameters, return values.
Object‑oriented concepts – classes, objects, inheritance, encapsulation, polymorphism.
Recursion – a function calling itself; base case prevents infinite loop.
Exception handling – try / catch / finally blocks to manage runtime errors.
2.9 Software Development
SDLC phases : requirements → design → implementation → testing → deployment → maintenance.
Testing types : unit, integration, system, acceptance.
Documentation : user manuals, API docs, version‑control history (Git).
2.10 Emerging Technologies (A‑Level Extension)
Artificial Intelligence – machine learning basics, neural networks.
Virtualisation – hypervisors, containers.
Cloud computing – SaaS, PaaS, IaaS models.
Internet of Things – sensors, edge computing.
3. Multimedia – Sampling Rate, Resolution & Image Types (Core Focus)
3.1 Key Terminology (Graphics)
Term
Definition
Pixel The smallest addressable element of a raster image; a single point of colour.
Resolution Number of pixels in an image or video frame, expressed as width × height (e.g., 1920 × 1080).
Colour depth / Bit depth Number of bits used to represent the colour of a single pixel (e.g., 24‑bit = 16.7 million colours).
File header Metadata at the start of a file that stores information such as resolution, colour depth, and compression type.
Bitmap (raster) image Image stored as an array of pixels; size grows with resolution and colour depth.
Vector graphic Image described by mathematical shapes (lines, curves); file size depends mainly on the number of objects, not on resolution.
3.2 Audio – Sampling Rate & Bit Depth
3.2.1 What is Sampling?
The sampling rate is the number of samples taken each second from a continuous analogue signal. It is measured in hertz (Hz) or kilohertz (kHz).
Nyquist theorem – the highest frequency that can be reproduced without aliasing is half the sampling rate:
\(f{\text{max}} = \dfrac{f {\text{sampling}}}{2}\)
3.2.2 Bit Depth (Audio Resolution)
Bit depth determines the number of discrete amplitude levels that can be stored for each sample. More bits give a larger dynamic range and lower quantisation noise.
8‑bit ≈ 48 dB dynamic range (telephone quality)
16‑bit ≈ 96 dB (CD quality)
24‑bit ≈ 144 dB (professional recording)
3.2.3 Impact on File Size (Uncompressed PCM)
\[
\text{File size (bits)} = f_{\text{sampling}} \times \text{bit depth} \times \text{channels} \times \text{duration (s)}
\]
3.2.4 Typical Audio Formats
Sampling Rate
Bit Depth
Max Reproducible Frequency
Typical Use
Data Rate (kbps)
8 kHz 8‑bit 4 kHz Telephone voice 64
44.1 kHz 16‑bit 22.05 kHz CD audio 1411 (stereo)
96 kHz 24‑bit 48 kHz High‑resolution audio 3072 (stereo)
3.2.5 Example Calculation (Audio)
Three‑minute stereo track, 44.1 kHz, 16‑bit:
\[
\begin{aligned}
\text{File size} &= 44{,}100 \times 16 \times 2 \times 180\\
&= 254{,}016{,}000\ \text{bits}\\
&\approx 30.2\ \text{MB}
\end{aligned}
\]
3.3 Video & Images – Resolution, Colour Depth & File Size
3.3.1 Resolution
Resolution = width × height (pixels). Doubling both dimensions quadruples the pixel count, so file size grows quadratically .
3.3.2 Colour Depth (Bits per Pixel)
8‑bit = 256 colours (e.g., GIF, simple graphics)
24‑bit = True colour (16.7 million colours)
30‑bit = 10 bits per channel, used for HDR video
3.3.3 Impact on Uncompressed File Size
For a single frame:
\[
\text{Frame size (bits)} = \text{width} \times \text{height} \times \text{colour depth}
\]
For a video clip of n frames:
\[
\text{Video size (bits)} = n \times \text{width} \times \text{height} \times \text{colour depth}
\]
3.3.4 Typical Resolutions & Approximate Uncompressed Bitrates (30 fps)
Resolution
Pixels / Frame
Colour Depth
Data / Frame (MB)
Bitrate (Mbps) @ 30 fps
640 × 480 (VGA) 307 200 24‑bit 0.88 21.2
1280 × 720 (HD) 921 600 24‑bit 2.64 63.4
1920 × 1080 (Full HD) 2 073 600 24‑bit 5.94 142.6
3840 × 2160 (4K UHD) 8 294 400 24‑bit 23.8 571.2
3.3.5 Example Calculation (Video)
10‑second clip, 1920 × 1080, 24‑bit colour, 30 fps:
\[
\begin{aligned}
\text{Frames} &= 30 \times 10 = 300\\[4pt]
\text{File size} &= 300 \times 1920 \times 1080 \times 24\\
&= 1{,}492{,}992{,}000\ \text{bits}\\
&\approx 177\ \text{MB}
\end{aligned}
\]
3.4 Bitmap vs. Vector Graphics
3.4.1 Definitions
Bitmap (raster) image – stored as a grid of pixels; size depends on resolution and colour depth.
Vector graphic – stored as a set of geometric primitives (lines, curves, shapes); size depends mainly on the number of objects, not on pixel dimensions.
3.4.2 File‑size Estimation (Bitmap)
\[
\text{File size (bytes)} = \frac{\text{width} \times \text{height} \times \text{colour depth}}{8}
\]
Example: 800 × 600 pixel image, 24‑bit colour → \(\frac{800 \times 600 \times 24}{8}=1{,}440{,}000\) bytes ≈ 1.37 MB.
3.4.3 When to Use Which?
Task / Content
Best Choice
Reasoning
Photographs, complex scenes Bitmap (JPEG, PNG) Colour varies per pixel; raster representation captures real‑world detail.
Logos, icons, line art Vector (SVG, EPS) Scales without loss of quality; few geometric objects.
Animated cartoons with solid colours Vector animation (e.g., Flash) or low‑resolution bitmap Vector keeps file size small and scales well.
Complex 3‑D renders Bitmap (rendered frame) Each pixel stores colour information from lighting calculations.
3.5 Compression – Lossless vs. Lossy
Method
Type
Error loading subjects.';
});
}
// Letter button click
document.querySelectorAll('.letter-btn').forEach(btn => {
btn.addEventListener('click', function() {
document.querySelectorAll('.letter-btn').forEach(b => {
b.classList.remove('bg-primary', 'text-white');
b.classList.add('bg-gray-200', 'text-gray-700');
});
this.classList.remove('bg-gray-200', 'text-gray-700');
this.classList.add('bg-primary', 'text-white');
currentLetter = this.dataset.letter === 'all' ? '' : this.dataset.letter;
loadSubjects(currentLetter === '' ? 'all' : currentLetter, document.getElementById('subjectSearch').value.trim());
});
});
// Search with debounce
let searchTimeout;
function filterSubjects() {
clearTimeout(searchTimeout);
searchTimeout = setTimeout(() => {
const search = document.getElementById('subjectSearch').value.trim();
loadSubjects(currentLetter === '' ? 'all' : currentLetter, search);
}, 400);
}
// Load "A" subjects on page load
document.addEventListener('DOMContentLoaded', () => {
document.querySelector('[data-letter="A"]').click(); // Trigger A by default
});
Support e-Consult Kenya
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources ,
past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.
e-Consult
Secure online learning platform connecting students with expert Cambridge tutors across Kenya.
© 2025 e-Consult. All rights reserved.