Published by Patrick Mutisya · 8 days ago
By the end of this lesson you should be able to read, write and interpret the nuclide notation \$^{A}_{Z}\text{X}\$ and use it confidently in calculations involving nuclear reactions.
The standard format is \$^{A}_{Z}\text{X}\$, where the mass number \$A\$ is placed as a superscript to the left of the element symbol and the atomic number \$Z\$ as a subscript. Example:
\$^{14}_{6}\text{C}\$
means a carbon nucleus with \$A=14\$ (total nucleons) and \$Z=6\$ (protons). The number of neutrons is \$N = 14 - 6 = 8\$.
| Nuclide (symbol) | Element (X) | Atomic number (Z) | Mass number (A) | Neutrons (N = A‑Z) | Common use |
|---|---|---|---|---|---|
| \$^{1}_{1}\text{H}\$ | H | 1 | 1 | 0 | Protium, hydrogen fuel |
| \$^{2}_{1}\text{H}\$ | H | 1 | 2 | 1 | Deuterium, heavy water |
| \$^{14}_{6}\text{C}\$ | C | 6 | 14 | 8 | Radiocarbon dating |
| \$^{235}_{92}\text{U}\$ | U | 92 | 235 | 143 | Fissile material in reactors |
| \$^{238}_{92}\text{U}\$ | U | 92 | 238 | 146 | Natural uranium, fertile material |
When writing nuclear equations, each reactant and product is expressed in nuclide notation. Conservation of mass number (\$A\$) and atomic number (\$Z\$) must be satisfied.
Example – Alpha decay of \$^{238}_{92}\text{U}\$:
\$^{238}{92}\text{U} \;\rightarrow\; ^{4}{2}\alpha \;+\; ^{234}_{90}\text{Th}\$
Check:
\$^{14}_{6}\text{C} \;\rightarrow\; ?\$
| Symbol | Element (X) | \$Z\$ (protons) | \$A\$ (mass number) | \$N\$ (neutrons) | Typical decay mode |
|---|---|---|---|---|---|
| \$^{3}_{1}\text{H}\$ | H | 1 | 3 | 2 | Beta‑minus |
| \$^{60}_{27}\text{Co}\$ | Co | 27 | 60 | 33 | Beta‑minus |
| \$^{222}_{86}\text{Rn}\$ | Rn | 86 | 222 | 136 | Alpha |
| \$^{131}_{53}\text{I}\$ | I | 53 | 131 | 78 | Beta‑minus |