| Syllabus Section | Relevant Sub‑topics |
|---|---|
| AS 1‑11 (Atoms, nuclei and radiation) | 11.1 Atoms, nuclei and radiation – nuclide notation, isotopic notation, decay modes, conservation of \$A\$ and \$Z\$ (this note). 11.2 Radioactivity – later: γ‑radiation, positron emission, electron capture, fission, fusion, lepton‑number conservation. |
| A 23.1 (Nuclear physics – mass‑defect & binding energy) | Link‑on box below introduces the connection. |
| Other AS & A‑level units (kinematics, dynamics, waves, electricity, …) | Will be used later – see the course road‑map hand‑out. |
• Isotopic notation – \$^{A}\text{X}\$ (mass number only). Used when the atomic number is obvious from the element symbol.
• Nuclide notation – \$^{A}_{Z}\text{X}\$ (both \$A\$ and \$Z\$). Required for any question involving nuclear reactions or when several isotopes of the same element appear together.
Example: A carbon nucleus with 6 protons and 8 neutrons has \$Z=6\$, \$A=14\$:
\$^{14}_{6}\text{C}\$
Neutrons \$N = 14 - 6 = 8\$.
| Decay type | Particle emitted | Charge (subscript) | Δ\$A\$ | Δ\$Z\$ |
|---|---|---|---|---|
| α‑decay | \$^{4}{2}\text{He}\$ (or \$^{4}{2}\alpha\$) | +2 | –4 | –2 |
| β⁻‑decay | \$^{0}_{-1}e\$ (electron) | –1 | 0 | +1 |
| β⁺‑decay | \$^{0}_{+1}e\$ (positron) | +1 | 0 | –1 |
| Electron capture (EC) | \$^{0}_{0}e\$ (inner‑shell electron captured) | 0 | 0 | –1 |
| γ‑radiation | \$^{0}_{0}\gamma\$ | 0 | 0 | 0 |
γ‑radiation carries no charge and does not change \$A\$ or \$Z\$ – it will be treated in Unit 11.2.
Every reactant and product must be expressed in nuclide form. The equation must obey:
Example 1 – α‑decay of \$^{238}_{92}\text{U}\$
\$^{238}{92}\text{U} \;\longrightarrow\; ^{4}{2}\text{He}\;+\;^{234}_{90}\text{Th}\$
Example 2 – β⁻‑decay of \$^{14}_{6}\text{C}\$
\$^{14}{6}\text{C} \;\longrightarrow\; ^{14}{7}\text{N}\;+\;^{0}_{-1}e\$
Example 3 – β⁺‑decay of \$^{22}_{11}\text{Na}\$ (positron emission)
\$^{22}{11}\text{Na} \;\longrightarrow\; ^{22}{10}\text{Ne}\;+\;^{0}_{+1}e\$
(The superscript “+1” indicates the positive charge of the emitted positron.)
Example 4 – Electron capture of \$^{55}_{26}\text{Fe}\$
\$^{55}{26}\text{Fe} \;\longrightarrow\; ^{55}{25}\text{Mn}\;+\;^{0}_{0}e\$
Once you can write balanced nuclear equations, you can calculate the energy released using the mass‑defect concept:
Preview example: The binding energy of \$^{4}_{2}\text{He}\$ is obtained from the mass defect between two protons, two neutrons and the helium nucleus.
| Nuclide | Element (X) | \$Z\$ | \$A\$ | \$N\$ | Typical use / decay mode |
|---|---|---|---|---|---|
| \$^{1}_{1}\text{H}\$ | H | 1 | 1 | 0 | Protium – stable |
| \$^{2}_{1}\text{H}\$ | H | 1 | 2 | 1 | Deuterium – heavy water |
| \$^{14}_{6}\text{C}\$ | C | 6 | 14 | 8 | Radiocarbon dating (β⁻ decay) |
| \$^{235}_{92}\text{U}\$ | U | 92 | 235 | 143 | Fissile material (α/β/γ series) |
| \$^{238}_{92}\text{U}\$ | U | 92 | 238 | 146 | Natural uranium – fertile |
\$^{14}_{6}\text{C} \;\longrightarrow\; \; ?\$
| Nuclide | Element (X) | \$Z\$ | \$A\$ | \$N\$ | Typical decay mode |
|---|---|---|---|---|---|
| \$^{3}_{1}\text{H}\$ | H | 1 | 3 | 2 | β⁻ |
| \$^{60}_{27}\text{Co}\$ | Co | 27 | 60 | 33 | β⁻ |
| \$^{222}_{86}\text{Rn}\$ | Rn | 86 | 222 | 136 | α |
| \$^{131}_{53}\text{I}\$ | I | 53 | 131 | 78 | β⁻ |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.