Recall that the Boltzmann constant k links the macroscopic gas constant R to the number of particles per mole NA:
\$k = \frac{R}{N_{\mathrm A}}\$
\$n = \frac{N}{N{\mathrm A}}\qquad\text{or}\qquad N = n\,N{\mathrm A}\$
where n is the amount in moles and N the total number of particles.
The molar mass of carbon dioxide is 44.01 g mol⁻¹. A 22.0 g sample contains
\$n = \frac{22.0\;\text{g}}{44.01\;\text{g mol}^{-1}} = 0.500\;\text{mol}\$
and therefore
\$N = 0.500\;\text{mol}\times 6.022\times10^{23}\;\text{mol}^{-1}=3.01\times10^{23}\;\text{molecules}.\$
How many grams of hydrogen correspond to \(2.0\times10^{23}\) molecules?
First find the number of moles:
\$n = \frac{N}{N_{\mathrm A}} = \frac{2.0\times10^{23}}{6.022\times10^{23}} = 0.332\;\text{mol}.\$
The molar mass of H₂ is 2.016 g mol⁻¹, so the mass is
\$m = nM = 0.332\;\text{mol}\times 2.016\;\text{g mol}^{-1}=0.670\;\text{g}.\$
The equation of state for an ideal gas is
\$pV = nRT\$
where
| Law | Statement (conditions fixed) | Mathematical form |
|---|---|---|
| Boyle’s law | At constant T and n, pressure is inversely proportional to volume. | \$pV = \text{constant}\$ |
| Charles’s law | At constant p and n, volume is directly proportional to absolute temperature. | \$\frac{V}{T} = \text{constant}\$ |
| Avogadro’s law | At constant p and T, volume is directly proportional to the amount of gas. | \$\frac{V}{n} = \text{constant}\$ |
Bridge paragraph: Combining Boyle’s, Charles’s and Avogadro’s laws eliminates the three separate constants and yields the single macroscopic ideal‑gas equation \(pV = nRT\). This unified form can be rewritten in microscopic terms by substituting \(n = N/N_{\mathrm A}\), where \(N\) is the total number of particles.
Replace the amount of substance in the macroscopic law:
\$pV = \frac{N}{N_{\mathrm A}}RT\$
Define the Boltzmann constant \(k = R/N_{\mathrm A}\) to obtain
\$pV = NkT\$
From the two equivalent expressions
and using \(n = N/N_{\mathrm A}\):
\$\frac{N}{N{\mathrm A}}RT = NkT \;\;\Longrightarrow\;\; k = \frac{R}{N{\mathrm A}}.\$
Consider a cubic container of side \(L\) (so \(V = L^{3}\)) and a single molecule of mass \(m\) moving with speed component \(c_{x}\) perpendicular to a wall.
\$F = \frac{\Delta p}{\Delta t}= \frac{2mc{x}}{2L/c{x}}= \frac{mc_{x}^{2}}{L}.\$
\$p = \frac{F}{A}= \frac{mc{x}^{2}}{L^{3}} = \frac{mc{x}^{2}}{V}.\$
\$\langle c{x}^{2}\rangle = \langle c{y}^{2}\rangle = \langle c_{z}^{2}\rangle = \frac{1}{3}\langle c^{2}\rangle.\$
\$pV = \frac{1}{3}\,N\,m\,\langle c^{2}\rangle.\$
The average translational kinetic energy of a molecule is
\$\langle E_{\text{kin}}\rangle = \frac{1}{2}m\langle c^{2}\rangle.\$
Comparing this with the microscopic ideal‑gas law (\(pV = NkT\)) leads to the fundamental result
\$\boxed{\langle E_{\text{kin}}\rangle = \frac{3}{2}\,kT}\$
and the root‑mean‑square speed
\$v_{\text{rms}} = \sqrt{\langle c^{2}\rangle}= \sqrt{\frac{3kT}{m}}.\$
| Constant | Symbol | Value (SI) | Units |
|---|---|---|---|
| Universal gas constant | R | 8.314 462 618 | J mol⁻¹ K⁻¹ |
| Avogadro constant | NA | 6.022 140 76 × 10²³ | mol⁻¹ |
| Boltzmann constant | k | 1.380 649 × 10⁻²³ | J K⁻¹ |
Problem: Calculate the rms speed of nitrogen (N₂) molecules at 300 K. (Molar mass of N₂ = 28.02 g mol⁻¹.)
\$m = \frac{M}{N_{\mathrm A}} = \frac{28.02\times10^{-3}\;\text{kg mol}^{-1}}{6.022\times10^{23}\;\text{mol}^{-1}} = 4.65\times10^{-26}\;\text{kg}.\$
\$v_{\text{rms}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3(1.380649\times10^{-23}\;\text{J K}^{-1})(300\;\text{K})}{4.65\times10^{-26}\;\text{kg}}} \approx 5.2\times10^{2}\;\text{m s}^{-1}.\$
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.