Statement – At any node (junction) in a steady‑state circuit the algebraic sum of currents is zero:
\$\displaystyle\sum{k=1}^{n} Ik = 0\$
Sign convention
Diagram (node example)

Why the law holds – Conservation of charge
In a short time \$\Delta t\$ the charge entering the node is \$Q{\text{in}}=\sum I{\text{in}}\Delta t\$, and the charge leaving is \$Q{\text{out}}=\sum I{\text{out}}\Delta t\$.
Because a node cannot store net charge in the steady state, \$Q{\text{in}}=Q{\text{out}}\$, giving
\$\sum I{\text{in}}-\sum I{\text{out}}=0\;\Longrightarrow\;\sum{k=1}^{n}Ik=0.\$
Statement – Traversing any closed loop, the algebraic sum of potential differences is zero:
\$\displaystyle\sum{k=1}^{m} Vk = 0\$
Sign convention (loop direction)
Limitation (syllabus wording)
KVL is valid for circuits in a steady state where the magnetic flux through any loop is constant. It does not apply to circuits containing inductors with a time‑varying current unless the induced emf is explicitly included in the loop equation.
Diagram (simple loop)

\$E - I R1 - I R2 - \dots - I R_n = 0\$
\$\Rightarrow\; I\,(R1+R2+\dots+R_n)=E\$
\$\boxed{R{\text{eq(series)}} = R1+R2+\dots+Rn}\$
\$\boxed{Ik = \dfrac{V}{Rk}} \qquad (k=1,2,\dots,n)\$
\$\$I{\text{total}} = I1+I2+\dots+In
= V\!\left(\frac1{R1}+\frac1{R2}+\dots+\frac1{R_n}\right)\$\$
\$\boxed{\displaystyle\frac1{R{\text{eq(parallel)}}}= \frac1{R1}+ \frac1{R2}+ \dots+ \frac1{Rn}}.\$
For a parallel network fed by a total current \$I_{\text{total}}\$, the current in branch \$i\$ is
\$\boxed{Ii = I{\text{total}}\;\frac{R{\text{eq}}}{Ri}}\$
where \$R_{\text{eq}}\$ is the equivalent resistance of the whole parallel group (the denominator of the parallel‑resistance formula). This form is explicitly required by the Cambridge syllabus.
Two resistors \$R1\$ and \$R2\$ in series across a battery of emf \$E\$ give a voltage across \$R_2\$ of
\$V{R2}=E\;\frac{R2}{R1+R_2}.\$
Numerical example (exam style)
A real battery is modelled as an ideal emf \$E\$ in series with an internal resistance \$r\$.
\$\boxed{V_{\text{term}} = E - I r}\$
\$\$E - I r - I R_{\!L}=0\;\Longrightarrow\;
\boxed{I = \dfrac{E}{r+R_{\!L}}}\$\$
Practical note (Paper 3) – \$r\$ can be measured by recording the terminal voltage for two different loads, plotting \$V\$ against \$I\$, and finding the slope (which equals \$-r\$).
\$P = IV = I^{2}R = \dfrac{V^{2}}{R}\$
\$W = Pt = \int P\,dt\$
Problem statement
Solution steps
\$\$\frac1{R_{BC}} = \frac1{6} + \frac1{12}= \frac{2+1}{12}= \frac{3}{12}
\;\Longrightarrow\; \boxed{R_{BC}=4\;\Omega}\$\$
\$R{\text{eq}} = r + R1 + R_{BC}= 1 + 4 + 4 = 9\;\Omega\$
\$I{\text{tot}} = \frac{E}{R{\text{eq}}}= \frac{12\;\text{V}}{9\;\Omega}= \boxed{1.33\;\text{A}}\$
\$I{R1}= I_{\text{tot}} = 1.33\;\text{A}\$
Equivalent resistance of the parallel group is \$R_{BC}=4\;\Omega\$.
\$\$I{R2}= I{\text{tot}}\;\frac{R{BC}}{R_2}
= 1.33\;\text{A}\times\frac{4}{6}=0.89\;\text{A}\$\$
\$\$I{R3}= I{\text{tot}}\;\frac{R{BC}}{R_3}
= 1.33\;\text{A}\times\frac{4}{12}=0.44\;\text{A}\$\$
(Check: \$I{R2}+I{R3}=1.33\;\text{A}=I_{\text{tot}}\$.)
\$\$V{\text{term}} = E - I{\text{tot}}\,r
= 12\;\text{V} - (1.33\;\text{A})(1\;\Omega)= \boxed{10.7\;\text{V}}\$\$
Result summary
| Quantity | Value |
|---|---|
| Total current \$I_{\text{tot}}\$ | 1.33 A |
| Current in \$R_1\$ | 1.33 A |
| Current in \$R_2\$ | 0.89 A |
| Current in \$R_3\$ | 0.44 A |
| Terminal voltage \$V_{\text{term}}\$ | 10.7 V |
Diagram (network used in the example)

| Law / Formula | Mathematical Form | Physical Basis |
|---|---|---|
| Kirchhoff’s First Law (Current Law) | \$\displaystyle\sum{k=1}^{n} Ik = 0\$ | Conservation of electric charge at a node (no net accumulation). |
| Kirchhoff’s Second Law (Voltage Law) | \$\displaystyle\sum{k=1}^{m} Vk = 0\$ | Conservation of energy around a closed loop (steady‑state, no changing magnetic flux). |
| Series resistance | \$R{\text{eq(series)}} = R1+R2+\dots+Rn\$ | Same current through each element; additive voltage drops (KVL). |
| Parallel resistance | \$\displaystyle\frac1{R{\text{eq(parallel)}}}= \frac1{R1}+ \frac1{R2}+ \dots+ \frac1{Rn}\$ | Same voltage across each branch; additive branch currents (KCL). |
| Current‑division rule | \$Ii = I{\text{total}}\;\frac{R{\text{eq}}}{Ri}\$ | Derived from KCL + Ohm’s law for parallel networks. |
| Potential divider | \$V{R2}=E\;\frac{R2}{R1+R_2}\$ | Direct application of KVL to a series pair. |
| Internal resistance model | \$V{\text{term}} = E - I r,\qquad I = \frac{E}{r+R{\!L}}\$ | Represents the voltage loss inside a real source. |
| Power | \$P = IV = I^{2}R = \frac{V^{2}}{R}\$ | Energy conversion rate; follows from \$P = dW/dt\$. |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.