Published by Patrick Mutisya · 8 days ago
To understand how the time‑base (horizontal) and y‑gain (vertical) controls of a CRO can be used to determine the frequency and amplitude of a travelling (progressive) wave.
| Control | Symbol | Physical Meaning | Typical Units |
|---|---|---|---|
| Time‑Base (Horizontal) | \$S\$ | Sweep speed – distance the electron beam travels per unit time | seconds per division (s/div) |
| Y‑Gain (Vertical) | \$V_{\text{div}}\$ | Voltage sensitivity – vertical displacement per unit voltage | volts per division (V/div) |
When a sinusoidal voltage of frequency \$f\$ is applied to the CRO input, the screen shows a repeating pattern with a period \$T=1/f\$.
\$T = L_{\text{h}}\times S\$
\$f = \frac{1}{T} = \frac{1}{L_{\text{h}}\,S}\$
The vertical peak‑to‑peak height \$L{\text{v}}\$ (in divisions) corresponds to the voltage peak‑to‑peak \$V{\text{pp}}\$ of the signal.
\$V{\text{pp}} = L{\text{v}}\times V_{\text{div}}\$
\$A = \frac{V{\text{pp}}}{2} = \frac{L{\text{v}}\,V_{\text{div}}}{2}\$
Suppose a CRO is set to a time‑base of \$S = 0.5\ \text{ms/div}\$ and a y‑gain of \$V_{\text{div}} = 2\ \text{V/div}\$. The displayed waveform has a horizontal length of \$4\$ divisions per cycle and a vertical peak‑to‑peak height of \$3\$ divisions.
\$T = 4\ \text{div}\times 0.5\ \text{ms/div}=2\ \text{ms}\$
\$f = \frac{1}{2\ \text{ms}} = 500\ \text{Hz}\$
\$V_{\text{pp}} = 3\ \text{div}\times 2\ \text{V/div}=6\ \text{V}\$
\$A = \frac{6\ \text{V}}{2}=3\ \text{V}\$
| Quantity | Measured on CRO | Formula | Units |
|---|---|---|---|
| Period \$T\$ | Horizontal divisions \$L_{\text{h}}\$ | \$T = L_{\text{h}}\,S\$ | seconds (s) |
| Frequency \$f\$ | Period \$T\$ | \$f = 1/T\$ | hertz (Hz) |
| Peak‑to‑peak voltage \$V_{\text{pp}}\$ | Vertical divisions \$L_{\text{v}}\$ | \$V{\text{pp}} = L{\text{v}}\,V_{\text{div}}\$ | volts (V) |
| Amplitude \$A\$ | Peak‑to‑peak voltage \$V_{\text{pp}}\$ | \$A = V_{\text{pp}}/2\$ | volts (V) |
When a mechanical wave on a stretched string is transduced into an electrical signal (e.g., via a pickup coil), the same CRO techniques apply. The measured frequency \$f\$ corresponds to the wave’s temporal frequency, while the amplitude \$A\$ reflects the string’s transverse displacement converted to voltage.
By varying the driving frequency and observing the CRO trace, resonance conditions (maximal amplitude) can be identified, linking the CRO measurements directly to the physical properties of the progressive wave.