\(\mathbf{p}=m\mathbf{v}\)
Equation (1): \(\displaystyle \mathbf{F}_{\text{net}}=\frac{\Delta\mathbf{p}}{\Delta t}\)
Equation (2): \(\displaystyle \mathbf{F}=m\mathbf{a}\)
Impulse = Force × time = Δp
\(\displaystyle \text{Impulse}=F\Delta t=\Delta p\)
\(\displaystyle m{1}v{1}+m{2}v{2}=m{1}v'{1}+m{2}v'{2}\)
\(\displaystyle \Delta\mathbf{p}=m\Delta\mathbf{v}\).
\(\displaystyle \mathbf{F}_{\text{avg}}=\frac{\Delta\mathbf{p}}{\Delta t}=m\frac{\Delta\mathbf{v}}{\Delta t}=m\mathbf{a}\).
\(\displaystyle \mathbf{F}= \frac{d\mathbf{p}}{dt}\).
| Quantity | Symbol | SI Unit | Unit Symbol |
|---|---|---|---|
| Momentum | \(\mathbf{p}\) | kilogram metre per second | kg·m·s⁻¹ |
| Resultant force | \(\mathbf{F}\) | newton | N |
| Impulse / change in momentum | \(\Delta\mathbf{p}\) | newton‑second | N·s |
| Time | t | second | s |
Problem: A 0.15 kg ball’s speed changes from 2.0 m s⁻¹ to 8.0 m s⁻¹ in 0.05 s. Find the average resultant force.
\(pi = m vi = 0.15 \times 2.0 = 0.30\ \text{kg·m·s}^{-1}\)
\(pf = m vf = 0.15 \times 8.0 = 1.20\ \text{kg·m·s}^{-1}\)
\(\Delta p = pf - pi = 1.20 - 0.30 = 0.90\ \text{kg·m·s}^{-1}\)
\(\displaystyle F_{\text{avg}} = \frac{\Delta p}{\Delta t}= \frac{0.90}{0.05}= 18\ \text{N}\)
Problem: A constant horizontal force of 5 N acts on a 0.30 kg cart for 0.20 s. Determine the increase in the cart’s speed.
\(\displaystyle \text{Impulse}=F\Delta t = 5 \times 0.20 = 1.0\ \text{N·s}\)
\(\Delta p = 1.0\ \text{kg·m·s}^{-1}\)
\(\displaystyle \Delta v = \frac{\Delta p}{m}= \frac{1.0}{0.30}=3.33\ \text{m s}^{-1}\)
Problem: Two carts on a frictionless track stick together after colliding. Cart A (0.5 kg) moves at 2.0 m s⁻¹ to the right; Cart B (0.8 kg) is initially at rest. Find the speed of the combined mass after the collision.
\(p{\text{initial}} = mA vA + mB v_B = 0.5 \times 2.0 + 0.8 \times 0 = 1.0\ \text{kg·m·s}^{-1}\)
\((mA+mB)v' = p_{\text{initial}}\)
\(\displaystyle v' = \frac{1.0}{0.5+0.8}= \frac{1.0}{1.3}=0.77\ \text{m s}^{-1}\) (to the right)
Resultant (net) force is defined as the rate of change of momentum:
\(\displaystyle \mathbf{F}_{\text{net}} = \frac{\Delta\mathbf{p}}{\Delta t}\) (Equation 1)
Impulse (\(F\Delta t\)) is the cause of that change, and when external forces are absent the total momentum of a closed system remains constant.
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.