Analyse circular orbits in gravitational fields by relating the gravitational force to the centripetal acceleration it provides, and use the concepts of gravitational field strength, orbital energy and escape velocity.
\$\mathbf{g}=\frac{\mathbf{F}g}{m{\text{test}}}\qquad\text{units: N kg}^{-1}\;(= \text{m s}^{-2})\$

At a distance r from the centre, the field strength is
\$g(r)=\frac{GM}{r^{2}}\$
with G = 6.674\times10^{-11}\;{\rm N\,m^{2}\,kg^{-2}}.
Newton’s law of universal gravitation gives the attractive force between two point masses m₁ and m₂ separated by a centre‑to‑centre distance r:
\$\mathbf{F}_g = -\,\frac{GMm}{r^{2}}\,\hat{\mathbf r}\$
\$\mathbf g = \frac{\mathbf F_g}{m}= \frac{GM}{r^{2}}\;\hat{\mathbf r}\$
This reproduces the result in 13.1, confirming that the field of a point mass falls off as \(1/r^{2}\).
An object of mass m moving with speed v in a circle of radius r requires a centripetal force
\$F_c = \frac{mv^{2}}{r}\$
directed toward the centre of the circle.
For a satellite of mass m orbiting a much larger body of mass M (planet, star, …) the gravitational attraction supplies the required centripetal force:
\$\frac{GMm}{r^{2}} = \frac{mv^{2}}{r}\$
Resulting orbital speed (circular‑orbit speed)
\$v = \sqrt{\frac{GM}{r}}\$
Note: the speed is independent of the satellite’s mass.
The period \(T\) is the time for one full revolution. Using the circumference \(2\pi r\):
\$\$T = \frac{2\pi r}{v}=2\pi r\sqrt{\frac{r}{GM}}
= 2\pi\sqrt{\frac{r^{3}}{GM}}\$\$
Thus \(T^{2}\propto r^{3}\), the circular‑orbit form of Kepler’s third law.
| Quantity | Expression | Comments |
|---|---|---|
| Kinetic energy | \(K=\tfrac12 mv^{2}= \dfrac{GMm}{2r}\) | Substituting \(v=\sqrt{GM/r}\). |
| Gravitational potential energy | \(U=-\dfrac{GMm}{r}\) | Zero reference at \(r\to\infty\). |
| Total mechanical energy | \(E = K+U = -\dfrac{GMm}{2r}\) | Negative for a bound (circular) orbit. |
The minimum speed needed to reach \(r\to\infty\) with zero kinetic energy is obtained by setting the total energy to zero:
\$\$\tfrac12 mv_{\text{esc}}^{2} - \frac{GMm}{r}=0
\;\;\Longrightarrow\;\;
v_{\text{esc}} = \sqrt{\frac{2GM}{r}}\$\$
Escape speed is \(\sqrt{2}\) times the circular‑orbit speed at the same radius.
Earth radius \(R{\oplus}=6.37\times10^{6}\,\text{m}\) → orbital radius \(r=R{\oplus}+h=6.78\times10^{6}\,\text{m}\).
\$\$v=\sqrt{\frac{GM_{\oplus}}{r}}
=\sqrt{\frac{(6.674\times10^{-11})(5.97\times10^{24})}{6.78\times10^{6}}}
\approx 7.67\times10^{3}\,\text{m s}^{-1}\$\$
\$\$T=2\pi\sqrt{\frac{r^{3}}{GM_{\oplus}}}
\approx 5.5\times10^{3}\,\text{s}\approx 92\;\text{min}\$\$
\$v_{\text{esc}}=\sqrt{2}\,v\approx1.09\times10^{4}\,\text{m s}^{-1}\$
For any bound orbit with semi‑major axis \(a\) and instantaneous distance \(r\) from the focus, the speed is
\$v = \sqrt{GM\!\left(\frac{2}{r}-\frac{1}{a}\right)}\$
\$E = -\frac{GMm}{2a}\$
\(\displaystyle v=\sqrt{GM/r}\) and \(\displaystyle T=2\pi\sqrt{r^{3}/GM}\).
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.