Published by Patrick Mutisya · 14 days ago
By the end of this lesson you should be able to calculate the decay constant (λ) of a radionuclide using the relationship
\$\lambda = \frac{0.693}{t_{1/2}}\$
where \$t_{1/2}\$ is the half‑life of the nuclide.
Radioactivity is the spontaneous transformation of an unstable nucleus into a more stable configuration. The process is random for individual nuclei but follows a predictable statistical law for a large collection.
The number of undecayed nuclei, \$N\$, at any time \$t\$ is given by the exponential decay law:
\$N(t)=N_0 e^{-\lambda t}\$
The half‑life, \$t{1/2}\$, is the time required for half of the original nuclei to decay. Setting \$N(t{1/2}) = \tfrac{1}{2}N_0\$ in the decay law gives:
\$\frac{1}{2}N0 = N0 e^{-\lambda t{1/2}} \;\;\Rightarrow\;\; e^{-\lambda t{1/2}} = \frac{1}{2}\$
Taking natural logarithms leads to the useful relationship:
\$\lambda = \frac{\ln 2}{t{1/2}} = \frac{0.693}{t{1/2}}\$
| Decay Mode | Particle Emitted | Change in Nucleus | Typical Energy (MeV) |
|---|---|---|---|
| Alpha (α) decay | Helium nucleus (\$^4_2\text{He}\$) | \$A \rightarrow A-4,\; Z \rightarrow Z-2\$ | 4–9 |
| Beta‑minus (β⁻) decay | Electron (\$e^-\$) + antineutrino | \$A \rightarrow A,\; Z \rightarrow Z+1\$ | 0.1–3 |
| Beta‑plus (β⁺) decay / Positron emission | Positron (\$e^+\$) + neutrino | \$A \rightarrow A,\; Z \rightarrow Z-1\$ | 0.5–2 |
| Electron capture | Capture of an inner‑shell electron | \$A \rightarrow A,\; Z \rightarrow Z-1\$ | \overline{0} (no kinetic particle) |
| Gamma (γ) decay | High‑energy photon | No change in \$A\$ or \$Z\$ (de‑excitation) | 0.1–10 |
Problem: A sample contains \$2.0 \times 10^{20}\$ atoms of \$^{60}\$Co, whose half‑life is \$5.27\$ years. Find the activity after \$10\$ years.
Solution:
\$N = N_0 e^{-\lambda t}=2.0\times10^{20} e^{-4.18\times10^{-9}\times3.156\times10^{8}} \approx 1.0\times10^{20}.\$