Derive, using the definition C = Q / V, the expressions for the equivalent capacitance of a group of capacitors when they are connected (a) in series and (b) in parallel. Extend the discussion to energy storage, discharge, dielectrics, other geometries, practical measurement and typical applications – all required by Topic 19 of the syllabus.
The capacitance of any device is defined as the ratio of the charge on its plates to the potential difference between them:
\( C = \dfrac{Q}{V}\) [unit: farad (F) = C · V⁻¹]
For an ideal parallel‑plate capacitor of plate area A and separation d:
\( C = \varepsilon{0}\,\dfrac{A}{d}\) [where \(\varepsilon{0}=8.85\times10^{-12}\,\text{F m}^{-1}\)]

\( Q{1}=Q{2}=…=Q_{n}=Q\)
\( V{i}= \dfrac{Q}{C{i}}\)
\( V{\text{total}} = \sum{i=1}^{n} V{i}= \sum{i=1}^{n}\dfrac{Q}{C_{i}}\)
\( C{\text{eq}} = \dfrac{Q}{V{\text{total}}}
= \dfrac{Q}{\displaystyle\sum{i=1}^{n}\dfrac{Q}{C{i}}}
= \frac{1}{\displaystyle\sum{i=1}^{n}\dfrac{1}{C{i}}}\)
Series formula \( \displaystyle\frac{1}{C{\text{eq}}}= \sum{i=1}^{n}\frac{1}{C_{i}}\)

\( Q{i}=C{i}V\)
\( Q{\text{total}} = \sum{i=1}^{n} Q{i}= \sum{i=1}^{n} C_{i}V\)
\( C{\text{eq}} = \dfrac{Q{\text{total}}}{V}
= \dfrac{\displaystyle\sum{i=1}^{n} C{i}V}{V}
= \displaystyle\sum{i=1}^{n} C{i}\)
Parallel formula \( C{\text{eq}} = \displaystyle\sum{i=1}^{n} C_{i}\)
Three capacitors have the following values: \(C{1}=2\;\mu\text{F}\), \(C{2}=3\;\mu\text{F}\) and \(C_{3}=5\;\mu\text{F}\).
\[
C{12}=C{1}+C_{2}=2\;\mu\text{F}+3\;\mu\text{F}=5\;\mu\text{F}.
\]
Now the parallel pair is in series with \(C_{3}=5\;\mu\text{F}\):
\[
\frac{1}{C{\text{eq}}}= \frac{1}{C{12}}+\frac{1}{C_{3}}
=\frac{1}{5\;\mu\text{F}}+\frac{1}{5\;\mu\text{F}}
=\frac{2}{5\;\mu\text{F}}
\;\;\Longrightarrow\;\;
C_{\text{eq}}= \frac{5\;\mu\text{F}}{2}=2.5\;\mu\text{F}.
\]
\[
Q = C_{\text{eq}}V = (2.5\times10^{-6}\,\text{F})(120\,\text{V}) = 3.0\times10^{-4}\,\text{C}=300\;\mu\text{C}.
\]
In a series connection the same charge appears on each element, so
\[
Q{12}=Q{3}=300\;\mu\text{C}.
\]
The voltage across the parallel pair:
\[
V{12}= \frac{Q}{C{12}} = \frac{300\;\mu\text{C}}{5\;\mu\text{F}} = 60\;\text{V}.
\]
Hence the voltage across \(C_{3}\) is also 60 V (the total is 120 V).
Energy stored in each capacitor:
\[
W{i}= \tfrac12 C{i}V_{i}^{2}.
\]
\[
W_{12}= \tfrac12(5\;\mu\text{F})(60^{2})=9.0\times10^{-3}\,\text{J},
\qquad
W_{3}= \tfrac12(5\;\mu\text{F})(60^{2})=9.0\times10^{-3}\,\text{J}.
\]
Total energy:
\[
W{\text{total}} = W{12}+W_{3}=1.8\times10^{-2}\,\text{J}.
\]
This example demonstrates the step‑by‑step use of the derived formulae (AO2) and the link between charge, voltage and stored energy.
\[
W = \int_{0}^{Q}\frac{Q'}{C}\,dQ' = \frac{1}{2}\frac{Q^{2}}{C}.
\]
\[
W = \frac{1}{2} C V^{2}.
\]
A 10 µF capacitor is charged to 200 V. The stored energy is
\( W = \tfrac12(10\times10^{-6}\,\text{F})(200^{2}\,\text{V}^{2}) = 0.20\;\text{J}.\)
\[
Q(t)=Q_{0}\,e^{-t/\tau},\qquad
V(t)=V_{0}\,e^{-t/\tau},
\]
where the time constant \(\tau\) is
\[
\tau = RC\;\;[\text{s}].
\]
\[
I(t)=\frac{V_{0}}{R}\,e^{-t/\tau}.
\]
A 4.7 µF capacitor discharges through a 10 kΩ resistor. The time constant is \(\tau = (10^{4}\,\Omega)(4.7\times10^{-6}\,\text{F}) = 0.047\;\text{s}\). After 0.047 s the voltage is 0.37 V₀.
\[
C = \kappa\,\varepsilon_{0}\,\frac{A}{d}.
\]
| Geometry | Capacitance |
|---|---|
| Spherical capacitor (inner radius \(a\), outer radius \(b\)) | \( C = 4\pi\varepsilon_{0}\dfrac{ab}{b-a}\) |
| Cylindrical capacitor (length \(l\), radii \(a | \( C = \dfrac{2\pi\varepsilon_{0}l}{\ln(b/a)}\) |
| Coaxial cable (per unit length) | \( C' = \dfrac{2\pi\varepsilon}{\ln(b/a)}\;\text{F m}^{-1}\) |
These expressions illustrate that the definition \(C=Q/V\) is universal; geometry merely determines the proportionality constant.
| Connection Type | Equivalent Capacitance | Physical Insight |
|---|---|---|
| Series | \(\displaystyle\frac{1}{C{\text{eq}}}= \sum{i=1}^{n}\frac{1}{C_{i}}\) | Same charge on each capacitor; individual voltages add. |
| Parallel | \( C{\text{eq}} = \displaystyle\sum{i=1}^{n} C_{i}\) | Same voltage across each capacitor; charges add. |
These notes satisfy all outcomes for Topic 19 – Capacitors and Capacitance in the Cambridge International AS & A Level Physics syllabus, providing clear derivations, worked examples, extensions to energy and discharge, practical considerations, and exam‑focused guidance.
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.