Published by Patrick Mutisya · 14 days ago
State that during α‑decay or β‑decay the nucleus changes to that of a different element.
The element is identified by its atomic number \$Z\$. Any change in \$Z\$ means a different element.
\$\$
^{A}{Z}\text{X} \;\rightarrow\; ^{A-4}{Z-2}\text{Y} + ^{4}_{2}\text{He}
\$\$
The daughter nucleus \$^{A-4}_{Z-2}\text{Y}\$ has atomic number \$Z-2\$, so it is a different element.
\$\$
^{A}{Z}\text{X} \;\rightarrow\; ^{A}{Z+1}\text{Y} + ^{0}{-1}\beta + \bar{\nu}{e}
\$\$
The daughter nucleus \$^{A}_{Z+1}\text{Y}\$ has atomic number \$Z+1\$, a different element.
\$\$
^{A}{Z}\text{X} \;\rightarrow\; ^{A}{Z-1}\text{Y} + ^{0}{+1}\beta^{+} + \nu{e}
\$\$
Again the element changes.
| Parent Nucleus | Decay Type | Daughter Nucleus | Change in Element |
|---|---|---|---|
| \$^{238}_{92}\text{U}\$ | α | \$^{234}_{90}\text{Th}\$ | U → Th (Z: 92 → 90) |
| \$^{14}_{6}\text{C}\$ | β⁻ | \$^{14}_{7}\text{N}\$ | C → N (Z: 6 → 7) |
| \$^{22}_{11}\text{Na}\$ | β⁺ | \$^{22}_{10}\text{Ne}\$ | Na → Ne (Z: 11 → 10) |
| \$^{40}_{19}\text{K}\$ | β⁻ (and also α rare) | \$^{40}_{20}\text{Ca}\$ | K → Ca (Z: 19 → 20) |
Because the atomic number changes, the daughter nucleus occupies a different position on the periodic table. This is why radioactive decay can be used to produce new elements or isotopes.
During both α‑decay and β‑decay the atomic number \$Z\$ of the nucleus changes (by –2, +1, or –1). Since \$Z\$ defines the chemical element, the nucleus becomes a different element after the decay.