use the unified atomic mass unit (u) as a unit of mass

Published by Patrick Mutisya · 14 days ago

Cambridge A-Level Physics 9702 – Atoms, Nuclei and Radiation

Objective

Students will be able to use the unified atomic mass unit (u) as a unit of mass in calculations involving atoms, nuclei and radiation.

1. The Unified Atomic Mass Unit

1.1 Definition

The unified atomic mass unit, symbolised by u (also written as amu), is defined as one twelfth of the mass of a neutral carbon‑12 atom:

\$\$

1\ \text{u} = \frac{1}{12}m_{\text{C}^{12}}

\$\$

1.2 \cdot alue in kilograms

Experimentally, the value of 1 u in SI units is:

\$\$

1\ \text{u}=1.66053906660\times10^{-27}\ \text{kg}

\$\$

This conversion factor allows us to move between the atomic scale and the macroscopic scale.

1.3 Why use the unified atomic mass unit?

  • Atomic and nuclear masses are of the order of 10⁻²⁷ kg, making the kilogram inconvenient.
  • Using u provides a convenient scale that directly relates to the number of nucleons (protons + neutrons) in a nucleus.
  • It simplifies stoichiometric calculations in chemistry and particle‑physics problems.

2. Relating Mass Number to Mass in u

2.1 Mass number (A)

The mass number A of an atom is the total number of protons and neutrons in its nucleus. For most nuclides the mass in unified atomic mass units is close to A:

\$\$

m \approx A\ \text{u}

\$\$

Small deviations arise from binding energy differences (mass defect).

2.2 Example: Carbon‑12

Carbon‑12 has A = 12. Its mass is defined as exactly 12 u, which corresponds to:

\$\$

12\ \text{u}=12\times1.66053906660\times10^{-27}\ \text{kg}=1.9926468799\times10^{-26}\ \text{kg}

\$\$

3. Converting Between u and kg

3.1 General conversion formula

To convert a mass m given in unified atomic mass units to kilograms:

\$\$

m\ (\text{kg}) = m\ (\text{u}) \times 1.66053906660\times10^{-27}\ \text{kg/u}

\$\$

3.2 Practice conversion

  1. Find the mass in kilograms of a uranium‑235 nucleus (A = 235).
  2. Express the mass of a neutron (≈ 1.008 u) in kilograms.

4. Applications in Radiation Physics

4.1 Energy–mass equivalence

Using Einstein’s relation \$E = mc^{2}\$, the mass of a particle expressed in u can be converted directly to energy in mega‑electron‑volts (MeV):

\$\$

E\ (\text{MeV}) = m\ (\text{u}) \times 931.494\ \text{MeV/u}

\$\$

Here \$c\$ is the speed of light in vacuum, \$c = 2.998\times10^{8}\ \text{m s}^{-1}\$.

4.2 Example: Alpha decay of \$^{238}\text{U}\$

The reaction is:

\$\$

^{238}\text{U} \rightarrow\ ^{234}\text{Th} +\ ^{4}\text{He} + Q

\$\$

Using atomic masses (in u):

  • \$m(^{238}\text{U}) = 238.050788\ \text{u}\$
  • \$m(^{234}\text{Th}) = 234.043601\ \text{u}\$
  • \$m(^{4}\text{He}) = 4.002603\ \text{u}\$

The Q‑value (energy released) is:

\$\$

Q = \bigl[m(^{238}\text{U}) - m(^{234}\text{Th}) - m(^{4}\text{He})\bigr]c^{2}

= (0.004584\ \text{u})\times931.494\ \text{MeV/u}

\approx 4.27\ \text{MeV}

\$\$

5. Summary Table of Common Nuclides

NuclideMass number (A)Atomic mass (u)Mass (kg)
\$^{1}\text{H}\$ (protium)11.0078251.674 × 10⁻²⁷
\$^{12}\text{C}\$1212.0000001.992 × 10⁻²⁶
\$^{14}\text{N}\$1414.0030742.324 × 10⁻²⁶
\$^{238}\text{U}\$238238.0507883.953 × 10⁻²⁵

6. Practice Questions

  1. Calculate the mass in kilograms of a single \$^{56}\text{Fe}\$ nucleus (atomic mass = 55.9349 u).
  2. A beta particle has a kinetic energy of 0.511 MeV. Using \$E = mc^{2}\$, find its mass in u.
  3. Determine the Q‑value for the beta decay \$^{14}\text{C} \rightarrow\ ^{14}\text{N} + e^{-} + \bar{\nu}_{e}\$ given:

    • \$m(^{14}\text{C}) = 14.003242\ \text{u}\$
    • \$m(^{14}\text{N}) = 14.003074\ \text{u}\$
    • \$m(e^{-}) = 0.0005486\ \text{u}\$

7. Suggested Diagram

Suggested diagram: A schematic showing the relationship between mass number, atomic mass (in u), and mass in kilograms, with arrows indicating the conversion factors \$1\ \text{u}=1.6605\times10^{-27}\ \text{kg}\$ and \$1\ \text{u}=931.5\ \text{MeV/c}^2\$.