Calculate the magnification of images and determine the actual size of specimens from drawings, photomicrographs and electron‑micrographs (scanning and transmission).
| Microscope | Typical Magnification Range (Cambridge 9700) | Main Use in Cell Studies | Key Sample‑Preparation Constraints |
|---|---|---|---|
| Light (optical) microscope | ≤ 2 000× | Whole cells, organelles (nucleus, vacuole) in live or stained preparations. | Wet mount; stains; cover slip; no dehydration required. |
| Scanning Electron Microscope (SEM) | ≤ 1 000 000× | 3‑D surface morphology (pollen grain, leaf surface, insect cuticle). | Fixation, dehydration, critical‑point drying, coating with a thin conductive metal layer. |
| Transmission Electron Microscope (TEM) | ≤ 10 000 000× | 2‑D internal ultrastructure (mitochondria, ribosomes, viruses). | Fixation, embedding in resin, ultrathin sectioning, heavy‑metal staining. |
The ratio of the size of the image to the size of the actual specimen.
For an optical microscope the total magnification (M) is the product of the objective power (mo) and the eyepiece power (me).
\$\$
M = m{o}\times m{e}
\$\$
Remember: keep the number of significant figures consistent with the least‑precise measurement (usually 2 sf for microscope powers).
The minimum distance between two points that can be distinguished as separate.
Resolution is limited by the wavelength of illumination and the numerical aperture (NA) of the objective. For light microscopes the Rayleigh criterion gives a practical limit of about 0.2 µm:
\$\$
d = \frac{0.61\lambda}{\text{NA}} \;\;\approx\;0.2\;\mu\text{m (visible light, NA≈1.4)}
\$\$
Magnification alone cannot reveal detail smaller than the resolution limit.
When the image dimension (I) and total magnification (M) are known:
\$\$
S = \frac{I}{M}
\$\$
S = real size (same units as I).
\$k = \frac{L{real}}{L{px}}\quad(\text{µm / px or nm / px})\$
\$S = I_{px}\times k\$
\$\text{Division value} = \frac{\text{Known length (µm)}}{\text{Number of divisions}}\$
Sketch measurement: nucleus = 12 mm. Sketch made at 400× total magnification.
\$\$
S = \frac{12\ \text{mm}}{400}=0.030\ \text{mm}=30\ \mu\text{m}
\$\$
\$k = \frac{2\ \mu\text{m}}{150\ \text{px}} = 0.0133\ \mu\text{m/px}\$
\$S = 450\ \text{px}\times0.0133\ \mu\text{m/px}=6.0\ \mu\text{m}\$
| Parameter | Value |
|---|---|
| Scale bar | 10 µm = 200 px |
| Measured diameter | 800 px |
\$k = \frac{10\ \mu\text{m}}{200\ \text{px}} = 0.05\ \mu\text{m/px}\$
\$S = 800\ \text{px}\times0.05\ \mu\text{m/px}=40\ \mu\text{m}\$
\$k = \frac{100\ \text{nm}}{250\ \text{px}} = 0.40\ \text{nm/px}\$
\$S = 120\ \text{px}\times0.40\ \text{nm/px}=48\ \text{nm}\$
Stage micrometer: 0.01 mm (10 µm) divisions. With a 40× objective and 10× eyepiece, 1 graticule division = 5 µm.
A chloroplast spans 8 graticule divisions.
\$S = 8 \times 5\ \mu\text{m}=40\ \mu\text{m}\$
| Task | Formula | Syllabus Outcome |
|---|---|---|
| Total magnification (optical) | \$M = m{o}\times m{e}\$ | AO 1.1.3 |
| Actual size from hand‑drawn image | \$S = \dfrac{I_{draw}}{M}\$ | AO 1.1.3 |
| Pixel‑to‑real conversion factor | \$k = \dfrac{L{real}}{L{px}}\$ | AO 1.1.3 |
| Actual size using pixels | \$S = I_{px}\times k\$ | AO 1.1.3 |
| Graticule division value | \$\text{Division} = \dfrac{\text{Known length}}{\text{Number of divisions}}\$ | AO 1.1.4 |
| Feature | Light Microscope | Scanning EM (SEM) | Transmission EM (TEM) |
|---|---|---|---|
| Illumination source | Visible light (halogen, LED) | Focused electron beam (scanning) | High‑energy electron beam transmitted through specimen |
| Typical magnification | ≤ 2 000× | ≤ 1 000 000× | ≤ 10 000 000× |
| Resolution (≈) | 0.2 µm (Rayleigh limit) | 1–5 nm (surface) | 0.1–0.5 nm (internal) |
| Sample preparation | Wet mount, stains, cover slip | Fixation, dehydration, critical‑point drying, metal coating | Fixation, resin embedding, ultrathin sectioning, heavy‑metal staining |
| Image type | Colour/bright‑field, phase‑contrast, fluorescence | 3‑D surface topography (black & white) | 2‑D internal ultrastructure (black & white) |
| Typical biological uses | Cell morphology, organelle localisation, live‑cell observation | Surface features of pollen, spores, insects, plant leaves | Organelle ultrastructure, viruses, macromolecular complexes |
.error-box{
border-left:4px solid #c00;
background:#fee;
padding:0.5em 1em;
margin:1em 0;
font-size:0.95em;
}
table{
width:100%;
border-collapse:collapse;
margin:1em 0;
}
th, td{
border:1px solid #999;
padding:0.4em;
text-align:left;
}
th{
background:#f0f0f0;
}
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.