\[
\sigma = \frac{F}{A}\qquad(\text{Pa}= \text{N m}^{-2})
\]
\[
\varepsilon = \frac{\Delta L}{L}\qquad(\text{dimensionless})
\]
\[
\sigma = E\,\varepsilon
\]
where E is Young’s modulus (Pa or GPa).
\[
\Delta L = \frac{F L}{A E}
\]
| Term | Definition (Cambridge syllabus) | Position on a σ‑ε graph |
|---|---|---|
| Limit of proportionality | Maximum stress for which stress and strain are strictly proportional (Hooke’s law holds exactly). | End of the straight‑line region. |
| Elastic limit | Maximum stress for which deformation is completely reversible. May lie slightly beyond the limit of proportionality. | Just before the onset of permanent (plastic) strain. |
| Yield point (yield stress) | Stress at which permanent (plastic) deformation begins; identified by a noticeable deviation from linearity. | Start of the curved “plastic” region. |
| Ultimate tensile strength (optional) | Maximum stress the material can sustain before necking begins. | Peak of the σ‑ε curve. |
\[
u = \frac{1}{2}\,\sigma\,\varepsilon \qquad (\text{J m}^{-3})
\]
\[
U = u\,V = \frac{1}{2}\,\sigma\,\varepsilon\,V
\]
where V is the volume of the specimen.
| Material | Young’s Modulus E (GPa) | Elastic limit σe (MPa) | Yield strength σy (MPa) |
|---|---|---|---|
| Steel (mild) | ≈ 200 | ≈ 250 | ≈ 350 |
| Aluminium | ≈ 70 | ≈ 70 | ≈ 95 |
| Copper | ≈ 110 | ≈ 70 | ≈ 210 |
| Polymers (e.g., PVC) | 2–4 | ≈ 5 | ≈ 15 |
Problem: A steel wire 2.00 m long has a cross‑sectional area of \(1.0\times10^{-6}\,\text{m}^2\). It is subjected to a tensile load of 300 N. Determine whether the deformation is elastic or plastic and, if elastic, calculate the extension. Use \(E{\text{steel}} = 200\;\text{GPa}\) and \(\sigma{e}=250\;\text{MPa}\).
\[
\sigma = \frac{F}{A}= \frac{300}{1.0\times10^{-6}} = 3.0\times10^{8}\,\text{Pa}=300\;\text{MPa}
\]
\[
300\;\text{MPa} \;>\; 250\;\text{MPa}
\]
The applied stress exceeds the elastic limit, so the wire will undergo plastic deformation. Hooke’s‑law formula cannot be used to find the final length.
Stress = \(\frac{200}{1.0\times10^{-6}} = 2.0\times10^{8}\,\text{Pa}=200\;\text{MPa}\) (< 250 MPa) → deformation is elastic.
Extension:
\[
\Delta L = \frac{F L}{A E}= \frac{200\times2.0}{1.0\times10^{-6}\times2.0\times10^{11}}
=2.0\times10^{-3}\,\text{m}=2.0\;\text{mm}
\]
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.