Published by Patrick Mutisya · 14 days ago
Understand how damping and external driving forces affect simple harmonic motion (SHM), and relate these concepts to electric fields in oscillatory circuits.
The equation of motion for a damped oscillator is
\$m\ddot{x}+b\dot{x}+kx=0\$
where \$m\$ is the mass, \$k\$ the spring constant, and \$b\$ the damping coefficient.
Three regimes are distinguished by the discriminant \$\Delta = b^{2}-4mk\$:
When a periodic driving force \$F{\text{d}}(t)=F0\cos(\omega_{\text{d}}t)\$ acts on the system, the equation becomes
\$m\ddot{x}+b\dot{x}+kx = F0\cos(\omega{\text{d}}t)\$
The steady‑state solution has the form
\$x(t)=A(\omega{\text{d}})\cos\!\big(\omega{\text{d}}t-\phi\big)\$
with amplitude
\$A(\omega{\text{d}})=\frac{F0/m}{\sqrt{(\omega0^{2}-\omega{\text{d}}^{2})^{2}+(\gamma\omega_{\text{d}})^{2}}}\$
and phase lag
\$\tan\phi=\frac{\gamma\omega{\text{d}}}{\omega0^{2}-\omega_{\text{d}}^{2}}\$
where \$\omega_0=\sqrt{k/m}\$ is the natural angular frequency and \$\gamma=b/m\$ the damping constant.
Resonance occurs when the driving frequency \$\omega{\text{d}}\$ maximises the amplitude \$A\$. Differentiating \$A(\omega{\text{d}})\$ gives the resonance condition
\$\omega{\text{r}}=\sqrt{\omega0^{2}-\frac{\gamma^{2}}{2}}\$
For light damping (\$\gamma\ll\omega0\$) this reduces to \$\omega{\text{r}}\approx\omega_0\$.
The quality factor \$Q\$ quantifies the sharpness of resonance:
\$Q=\frac{\omega_0}{\gamma}=\frac{1}{b}\sqrt{\frac{k}{m}}\$
A high \$Q\$ means a narrow resonance peak and large amplitude at \$\omega_{\text{r}}\$.
An RLC series circuit obeys the same differential equation as a damped driven mechanical oscillator, with the substitutions
| Mechanical Quantity | Electrical Analogue |
|---|---|
| Mass \$m\$ | Inductance \$L\$ |
| Damping coefficient \$b\$ | Resistance \$R\$ |
| Spring constant \$k\$ | Reciprocal of capacitance \$1/C\$ |
| Displacement \$x\$ | Charge \$q\$ |
| Force \$F\$ | EMF \$\mathcal{E}\$ |
The circuit equation is
\$L\frac{d^{2}q}{dt^{2}}+R\frac{dq}{dt}+\frac{q}{C}= \mathcal{E}0\cos(\omega{\text{d}}t)\$
The voltage across the capacitor \$VC = q/C\$ plays the role of the displacement \$x\$, and the electric field \$E\$ inside the capacitor is \$E = VC/d\$, linking the mechanical amplitude to an electric field amplitude.
Problem: A mass \$m=0.5\;\text{kg}\$ is attached to a spring with \$k=200\;\text{N m}^{-1}\$ and experiences a damping force \$b\dot{x}\$ with \$b=2\;\text{kg s}^{-1}\$. It is driven by a force \$F0=10\;\text{N}\$ at a frequency \$f{\text{d}}=2\;\text{Hz}\$. Determine the steady‑state amplitude and the phase lag.
\$\$A=\frac{F0/m}{\sqrt{(\omega0^{2}-\omega{\text{d}}^{2})^{2}+(\gamma\omega{\text{d}})^{2}}}
=\frac{10/0.5}{\sqrt{(400-158)^{2}+(4\times12.57)^{2}}}\approx0.058\;\text{m}\$\$
\$\$\tan\phi=\frac{\gamma\omega{\text{d}}}{\omega0^{2}-\omega_{\text{d}}^{2}}
=\frac{4\times12.57}{400-158}\approx0.21\;\Rightarrow\;\phi\approx12^{\circ}\$\$
Thus the mass oscillates with an amplitude of about \$5.8\;\text{cm}\$ and lags the driving force by roughly \$12^{\circ}\$.