Demonstrate a clear understanding of Boolean algebra – its laws, identities and simplification techniques – and apply this knowledge to design and analyse both combinational and sequential logic circuits as required by the Cambridge AS & A‑Level Computer Science syllabus.
| Law | Expression |
|---|---|
| Identity | \$X+0 = X\qquad X\cdot1 = X\$ |
| Null | \$X+1 = 1\qquad X\cdot0 = 0\$ |
| Idempotent | \$X+X = X\qquad X\cdot X = X\$ |
| Complement | \$X+\overline{X}=1\qquad X\cdot\overline{X}=0\$ |
| Commutative | \$X+Y = Y+X\qquad X\cdot Y = Y\cdot X\$ |
| Associative | \$(X+Y)+Z = X+(Y+Z)\$ \$(X\cdot Y)\cdot Z = X\cdot(Y\cdot Z)\$ |
| Distributive | \$X\cdot(Y+Z)=X\cdot Y+X\cdot Z\$ \$X+(Y\cdot Z)=(X+Y)\cdot (X+Z)\$ |
| De Morgan | \$\overline{X+Y}= \overline{X}\cdot\overline{Y}\$ \$\overline{X\cdot Y}= \overline{X}+ \overline{Y}\$ |
A logical OR of one or more AND terms (minterms). Each minterm contains every variable either in true or complemented form.
Obtaining SOP from a truth table:
A logical AND of one or more OR terms (maxterms). Each maxterm contains every variable either in true or complemented form.
Obtaining POS from a truth table:
Example – Converting POS to SOP
Given \$F = (A+\overline{C})(\overline{B}+D)\$
\$F = A\overline{B}+AD+\overline{B}\,\overline{C}+\overline{C}D\$.
Example – Simplify \$G = A\overline{B}+AB+\overline{A}\,\overline{B}\$
1. \$G = A\overline{B}+AB+\overline{A}\,\overline{B}\$ (original)
2. \$= A(\overline{B}+B)+\overline{A}\,\overline{B}\$ (factor A)
3. \$= A\cdot1+\overline{A}\,\overline{B}\$ (complement law)
4. \$= A+\overline{A}\,\overline{B}\$ (identity)
5. \$= (A+\overline{A})(A+\overline{B})\$ (distributive)
6. \$= 1\cdot(A+\overline{B})\$ (complement)
7. \$= A+\overline{B}\$ (identity)
The minimal SOP is \$G = A+\overline{B}\$.
Use algebraic identities to reduce the expression before drawing a K‑map, or use a K‑map to spot patterns that suggest a convenient algebraic manipulation.
A K‑map is a rectangular array whose cells represent minterms (SOP) or maxterms (POS). Variable ordering follows Gray code so that adjacent cells differ in only one variable.
| CD | ||||
|---|---|---|---|---|
| AB | 00 | 01 | 11 | 10 |
| 00 | m0 | m1 | m3 | m2 |
| 01 | m4 | m5 | m7 | m6 |
| 11 | m12 | m13 | m15 | m14 |
| 10 | m8 | m9 | m11 | m10 |
Minimise \$F(A,B,C,D)=\displaystyle\sum m(0,2,5,7,8,10,13,15)\$
Function \$H(A,B,C)=\displaystyle\sum m(1,2,5,6)\$, with don’t‑care cells at \$m0\$ and \$m7\$.
| AB \ C | 0 | 1 |
|---|---|---|
| 00 | d | 1 |
| 01 | 1 | d |
| 11 | 1 | 1 |
| 10 | 0 | 0 |
Minimal SOP: \$\displaystyle H = \overline{A}C + AB\$.
| Inputs | Sum \$S\$ | Carry \$C\$ |
|---|---|---|
| \$A\$, \$B\$ | \$S = A\oplus B = A\overline{B}+\overline{A}B\$ | \$C = A\cdot B\$ |
Both expressions are already minimal (verified with 2‑variable K‑maps). The circuit uses one XOR gate (or two AND/OR/NOT gates) for \$S\$ and one AND gate for \$C\$.
| Inputs | Sum \$S\$ | Carry‑out \$C_{out}\$ |
|---|---|---|
| \$A\$, \$B\$, \$C{in}\$ | \$S = A\oplus B\oplus C{in}\$ | \$C{out}=AB+AC{in}+BC_{in}\$ |
K‑map minimisation of \$C_{out}\$ yields the expression shown. The sum can be built from two half‑adders (cascade) plus an OR gate for the final carry.
A cascade of four full‑adders. Each stage \$i\$ (starting at \$i=0\$) receives \$Ai\$, \$Bi\$ and the carry from the previous stage \$C_i\$.
C0 → FA0 → S0
C1 → FA1 → S1
C2 → FA2 → S2
C3 → FA3 → S3
C4 (final carry‑out)
Diagram (simplified):

The overall SOP for each sum bit is the same as a single full‑adder; the total propagation delay is the sum of the delays of the four stages.
Truth table yields \$Y = \overline{S}\,D0 + S\,D1\$ – a classic SOP. Implementation: two 2‑input AND gates, one inverter for \$\overline{S}\$, and a 2‑input OR gate.
Outputs are the four minterms of the select lines:
Each output is realised with a single 2‑input AND gate; the decoder illustrates the direct mapping from SOP form to hardware.
Boolean algebra is used to derive the characteristic equations of simple storage elements.
\$Q_{next}=S+\overline{R}\,Q\$ (derived by applying the NOR truth table and simplifying with De Morgan).
\$Q_{next}=J\overline{Q}+ \overline{K}Q\$.
\$Q_{next}=D\$ (transparent when clocked). It can be built from a JK flip‑flop by tying \$J=D\$ and \$K=\overline{D}\$, demonstrating the use of Boolean identities.
These equations are usually minimised to a small number of NAND or NOR gates, showing the practical value of De Morgan’s theorem for implementing sequential circuits with universal gates.
Standard gate symbols:
Example – Circuit for \$F = \overline{A}B + A(C + B)\$

| A | B | C | \$\overline{A}\$ | \$\overline{A}B\$ | \$C+B\$ | \$A(C+B)\$ | F |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.