Published by Patrick Mutisya · 14 days ago
In physics a quantity is either a scalar or a vector. Scalars have only magnitude (size), whereas vectors have both magnitude and direction.
Vectors are commonly represented by arrows. The length of the arrow is proportional to the magnitude, and the arrow points in the direction of the vector.
When vectors are expressed in components, addition is performed component‑wise:
\$\vec{A} = Ax \hat{i} + Ay \hat{j}, \qquad \vec{B} = Bx \hat{i} + By \hat{j}\$
\$\vec{R} = \vec{A} + \vec{B} = (Ax + Bx)\hat{i} + (Ay + By)\hat{j}\$
The magnitude and direction of \$\vec{R}\$ are then obtained from:
\$R = \sqrt{(Ax + Bx)^2 + (Ay + By)^2}\$
\$\thetaR = \tan^{-1}\!\left(\frac{Ay + By}{Ax + B_x}\right)\$
Subtracting \$\vec{B}\$ from \$\vec{A}\$ is equivalent to adding \$\vec{A}\$ to the negative of \$\vec{B}\$:
\$\vec{A} - \vec{B} = \vec{A} + (-\vec{B})\$
Graphically, reverse the direction of \$\vec{B}\$ (keep its magnitude) and then use the addition methods above.
\$\vec{A} - \vec{B} = (Ax - Bx)\hat{i} + (Ay - By)\hat{j}\$
Magnitude and direction are obtained in the same way as for addition.
Problem: Two forces act in the horizontal plane. \$\vec{F}1 = 30\;\text{N}\$ at \$30^\circ\$ north of east, and \$\vec{F}2 = 40\;\text{N}\$ at \$120^\circ\$ measured anticlockwise from east. Find the resultant force \$\vec{F}R = \vec{F}1 + \vec{F}_2\$.
\$F{1x}=30\cos30^\circ,\quad F{1y}=30\sin30^\circ\$
\$F{2x}=40\cos120^\circ,\quad F{2y}=40\sin120^\circ\$
\$F{1x}=30(0.866)=25.98\;\text{N},\qquad F{1y}=30(0.5)=15.0\;\text{N}\$
\$F{2x}=40(-0.5)=-20.0\;\text{N},\qquad F{2y}=40(0.866)=34.64\;\text{N}\$
\$F{Rx}=F{1x}+F_{2x}=25.98-20.0=5.98\;\text{N}\$
\$F{Ry}=F{1y}+F_{2y}=15.0+34.64=49.64\;\text{N}\$
\$F_R=\sqrt{(5.98)^2+(49.64)^2}=50.0\;\text{N}\$
\$\theta_R=\tan^{-1}\!\left(\frac{49.64}{5.98}\right)=83.1^\circ\;\text{north of east}\$
| Operation | Graphical Method | Component Formula | Resultant Magnitude | Resultant Direction |
|---|---|---|---|---|
| Addition \$\vec{A}+\vec{B}\$ | Tip‑to‑tail or parallelogram | \$(Ax+Bx)\hat{i}+(Ay+By)\hat{j}\$ | \$\sqrt{(Ax+Bx)^2+(Ay+By)^2}\$ | \$\tan^{-1}\!\left(\dfrac{Ay+By}{Ax+Bx}\right)\$ |
| Subtraction \$\vec{A}-\vec{B}\$ | Reverse \$\vec{B}\$ then add | \$(Ax-Bx)\hat{i}+(Ay-By)\hat{j}\$ | \$\sqrt{(Ax-Bx)^2+(Ay-By)^2}\$ | \$\tan^{-1}\!\left(\dfrac{Ay-By}{Ax-Bx}\right)\$ |