| Quantity | Definition | Example |
|---|---|---|
| Scalar | A physical quantity described by a magnitude only (single number + unit). | Mass \(m = 2\;\text{kg}\), Temperature \(T = 25^{\circ}\text{C}\) |
| Vector | A physical quantity described by a magnitude and a direction. It can be written in terms of two perpendicular components. | Displacement \(\mathbf{s}\), Force \(\mathbf{F}\) |
\(\hat{\mathbf i}\) and \(\hat{\mathbf j}\) are unit vectors along the chosen x‑ and y‑axes:
An arrow whose length is proportional to the magnitude and whose orientation shows the direction.
For a vector \(\mathbf{A}\) in the plane:
\[
\mathbf{A}=Ax\hat{\mathbf i}+Ay\hat{\mathbf j}
\]
where \(Ax\) and \(Ay\) are the components along the x‑ and y-axes respectively.
If a vector has magnitude \(A\) and makes an angle \(\theta\) measured anticlockwise from the positive x-axis:
\[
Ax = A\cos\theta,\qquad Ay = A\sin\theta
\]
Conversely, given components \(Ax\) and \(Ay\):
\[
A = \sqrt{Ax^{2}+Ay^{2}},\qquad
\theta = \tan^{-1}\!\left(\frac{Ay}{Ax}\right)
\]
Use the signs of \(Ax\) and \(Ay\) (or a calculator’s “atan2” function) to place \(\theta\) in the correct quadrant.
| Method | Steps (quick‑check) | Illustration |
|---|---|---|
| Tip‑to‑Tail (Polygon) |
| |
| Parallelogram |
|
For \(\mathbf{A}=Ax\hat{\mathbf i}+Ay\hat{\mathbf j}\) and \(\mathbf{B}=Bx\hat{\mathbf i}+By\hat{\mathbf j}\):
\[
\boxed{\mathbf{R}= \mathbf{A}+\mathbf{B}= (Ax+Bx)\hat{\mathbf i}+ (Ay+By)\hat{\mathbf j}}
\]
Find the magnitude and direction of \(\mathbf{R}\) with the conversion formulas given above.
Subtracting \(\mathbf{B}\) from \(\mathbf{A}\) is equivalent to adding the negative of \(\mathbf{B}\) (same length, opposite direction).
| Step | Description | Illustration |
|---|---|---|
| 1. Reverse \(\mathbf{B}\) | Draw a vector \(-\mathbf{B}\) with the same magnitude as \(\mathbf{B}\) but pointing opposite to \(\mathbf{B}\). | |
| 2. Add \(\mathbf{A}\) and \(-\mathbf{B}\) | Use either tip‑to‑tail or parallelogram method as for addition. |
\[
\boxed{\mathbf{A}-\mathbf{B}= (Ax-Bx)\hat{\mathbf i}+ (Ay-By)\hat{\mathbf j}}
\]
Again use the magnitude‑direction formulas to obtain the resultant’s size and angle.
Problem: Two forces act in the horizontal plane.
Find the resultant \(\mathbf{F}R = \mathbf{F}1+\mathbf{F}_2\).
\[
\begin{aligned}
F_{1x}&=30\cos30^{\circ}=30(0.866)=25.98\;\text{N}\\
F_{1y}&=30\sin30^{\circ}=30(0.5)=15.00\;\text{N}\\[4pt]
F_{2x}&=40\cos120^{\circ}=40(-0.5)=-20.0\;\text{N}\\
F_{2y}&=40\sin120^{\circ}=40(0.866)=34.64\;\text{N}
\end{aligned}
\]
\[
F{Rx}=F{1x}+F_{2x}=25.98-20.0=5.98\;\text{N}
\]
\[
F{Ry}=F{1y}+F_{2y}=15.00+34.64=49.64\;\text{N}
\]
\[
FR=\sqrt{F{Rx}^{2}+F_{Ry}^{2}}=\sqrt{(5.98)^{2}+(49.64)^{2}}=50.0\;\text{N}
\]
\[
\thetaR=\tan^{-1}\!\left(\frac{F{Ry}}{F_{Rx}}\right)=\tan^{-1}\!\left(\frac{49.64}{5.98}\right)=83.1^{\circ}
\]
Both components are positive → first quadrant → “\(83.1^{\circ}\) north of east”.
Problem: A displacement \(\mathbf{d}1 = 12\;\text{m}\) at \(40^{\circ}\) east of north is followed by a displacement \(\mathbf{d}2 = 5\;\text{m}\) due south. Find the net displacement \(\mathbf{d} = \mathbf{d}1-\mathbf{d}2\).
\[
\begin{aligned}
d_{1x}&=12\sin40^{\circ}=12(0.643)=7.72\;\text{m}\\
d_{1y}&=12\cos40^{\circ}=12(0.766)=9.19\;\text{m}\\
d_{2x}&=0\\
d_{2y}&=-5\;\text{m}\quad(\text{south is –\(y\)})
\end{aligned}
\]
\[
dx = d{1x}-d_{2x}=7.72-0=7.72\;\text{m}
\]
\[
dy = d{1y}-d_{2y}=9.19-(-5)=14.19\;\text{m}
\]
\[
d=\sqrt{dx^{2}+dy^{2}}=\sqrt{7.72^{2}+14.19^{2}}=16.2\;\text{m}
\]
\[
\theta=\tan^{-1}\!\left(\frac{dx}{dy}\right)=\tan^{-1}\!\left(\frac{7.72}{14.19}\right)=28.6^{\circ}
\]
Net displacement: \(16.2\;\text{m}\) at \(28.6^{\circ}\) east of north.
| Operation | Graphical Method (steps) | Component Formula | Resultant Magnitude | Resultant Direction |
|---|---|---|---|---|
| \(\mathbf{A}+\mathbf{B}\) |
| \((Ax+Bx)\hat{\mathbf i}+(Ay+By)\hat{\mathbf j}\) | \(\sqrt{(Ax+Bx)^2+(Ay+By)^2}\) | \(\tan^{-1}\!\bigl((Ay+By)/(Ax+Bx)\bigr)\) (adjust quadrant) |
| \(\mathbf{A}-\mathbf{B}\) |
| \((Ax-Bx)\hat{\mathbf i}+(Ay-By)\hat{\mathbf j}\) | \(\sqrt{(Ax-Bx)^2+(Ay-By)^2}\) | \(\tan^{-1}\!\bigl((Ay-By)/(Ax-Bx)\bigr)\) (adjust quadrant) |
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.