describe a simple model for the nuclear atom to include protons, neutrons and orbital electrons

Simple Nuclear Model of the Atom

1. Fundamental Particles

1.1 Nucleons and Electrons

ParticleSymbolChargeRelative mass (u)
Proton\$p^{+}\$+\$e\$ (elementary charge)1.007 276 u ≈ 1 u
Neutron\$n^{0}\$01.008 665 u ≈ 1 u
Electron\$e^{-}\$\$e\$0.000 548 u ≈ 1/1836 u

1.2 Quark Flavours (relevant to the 9702 syllabus)

QuarkSymbolChargeTypical mass (MeV/\$c^{2}\$)
Upu+\$\frac{2}{3}e\$≈ 2.2
Downd\$\frac{1}{3}e\$≈ 4.7
Charmc+\$\frac{2}{3}e\$≈ 1 280
Stranges\$\frac{1}{3}e\$≈ 95
Topt+\$\frac{2}{3}e\$≈ 173 000
Bottomb\$\frac{1}{3}e\$≈ 4 180

1.3 Quark composition of nucleons

HadronQuark contentNet charge
Proton (baryon)uud+\$\frac{2}{3}e\$ + \$\frac{2}{3}e\$ – \$\frac{1}{3}e\$ = +\$e\$
Neutron (baryon)udd+\$\frac{2}{3}e\$ – \$\frac{1}{3}e\$ – \$\frac{1}{3}e\$ = 0

1.4 β‑decay at quark level (required learning outcome)

  • β⁻ decay: a down quark changes into an up quark, emitting an electron and an antineutrino

    \$d \;\rightarrow\; u + e^{-} + \bar{\nu}_{e}\$

    At the nucleon level: \$n \rightarrow p^{+}+e^{-}+\bar{\nu}_{e}\$.

  • β⁺ decay (positron emission): an up quark changes into a down quark, emitting a positron and a neutrino

    \$u \;\rightarrow\; d + e^{+} + \nu_{e}\$

    At the nucleon level: \$p^{+} \rightarrow n + e^{+} + \nu_{e}\$.

2. Structure of the Atom

  1. Nucleus

    • Contains \$Z\$ protons and \$N\$ neutrons (collectively called nucleons).
    • Radius ≈ \$1\times10^{-15}\,\text{m}\$ (1 fm); about 10 000 times smaller than the whole atom.
    • Mass number \$A = Z + N\$.
    • Holds > 99.9 % of the atomic mass.

  2. Electron cloud

    • Electrons occupy *orbitals* that, for an introductory model, are represented by concentric shells \$K\$, \$L\$, \$M\$, … with principal quantum numbers \$n = 1,2,3,\dots\$.
    • Maximum capacity of a shell: \$2n^{2}\$ electrons (e.g. \$K\$ holds 2, \$L\$ holds 8, \$M\$ holds 18).
    • Atomic radius is typically \$0.1\$\$0.3\,\$nm (1 Å = \$10^{-10}\$ m).

3. Nuclear Notation, Isotopes & Conservation Laws

The Cambridge notation for a nuclide is \$^{A}_{Z}\text{X}\$, where:

  • \$\text{X}\$ = chemical symbol,
  • \$Z\$ = atomic number (number of protons),
  • \$A\$ = mass number (\$Z+N\$).

In all nuclear reactions the following are conserved:

  • Charge (Z) – the total number of protons before and after the reaction is the same.
  • Nucleon number (A) – the total number of protons + neutrons is unchanged.

IsotopeNotation\$Z\$ (protons)\$N\$ (neutrons)\$A\$ (mass number)
Carbon‑12\$^{12}_{6}\text{C}\$6612
Carbon‑14\$^{14}_{6}\text{C}\$6814
Uranium‑235\$^{235}_{92}\text{U}\$92143235

4. Types of Radioactive Decay

4.1 Alpha (α) decay

  • Emission of a \$^{4}_{2}\alpha\$ particle (2 p + 2 n).

    \$^{A}{Z}\text{X}\;\rightarrow\;^{A-4}{Z-2}\text{Y}+^{4}_{2}\alpha\$

  • Low penetrating power (stopped by a sheet of paper); high ionising power.

4.2 Beta (β) decay

  • β⁻ decay – neutron → proton + electron + antineutrino.

    \$^{A}{Z}\text{X}\;\rightarrow\;^{A}{Z+1}\text{Y}+e^{-}+\bar{\nu}_{e}\$

  • β⁺ decay (positron emission) – proton → neutron + positron + neutrino.

    \$^{A}{Z}\text{X}\;\rightarrow\;^{A}{Z-1}\text{Y}+e^{+}+\nu_{e}\$

  • Medium penetrating power; stopped by a few millimetres of aluminium.

4.3 Gamma (γ) decay

  • Emission of a high‑energy photon from an excited nucleus.

    \$^{A}{Z}\text{X}^{*}\;\rightarrow\;^{A}{Z}\text{X}+ \gamma\$

  • No change in \$Z\$ or \$A\$.
  • Very high penetrating power; dense materials (lead, several centimetres) are required for shielding.

5. Radioactive Decay Law & Half‑Life

The number of undecayed nuclei after time \$t\$ is

\$\$

N(t)=N_{0}\,e^{-\lambda t}

\$\$

  • \$N_{0}\$ – initial number of nuclei.
  • \$\lambda\$ – decay constant (s⁻¹).
  • Activity \$A\$ (disintegrations s⁻¹) is \$A=\lambda N\$.

Half‑life:

\$\$

t_{1/2}=\frac{\ln 2}{\lambda}= \frac{0.693}{\lambda}

\$\$

Example (exam style): A sample contains \$2.0\times10^{6}\$ atoms of a radionuclide. After 10 days the activity is measured to be \$5.0\times10^{5}\$ disintegrations s⁻¹. If the initial activity was \$1.0\times10^{6}\$ disintegrations s⁻¹, calculate the half‑life.

  1. Determine \$\lambda\$ from \$A=\lambda N\$: \$\lambda = A/N_{0}=1.0\times10^{6}/2.0\times10^{6}=5.0\times10^{-1}\,\text{s}^{-1}\$ (note: convert days to seconds if required).
  2. Half‑life \$t_{1/2}=0.693/\lambda\approx1.39\,\$s (illustrative – the numbers can be adapted for a realistic half‑life).

6. Mass Defect and Binding Energy

The mass of a nucleus is slightly less than the sum of the masses of its separate nucleons. The difference is the mass defect \$\Delta m\$.

\$\$

\Delta m = Zm{p}+Nm{n}-m_{\text{nucleus}}

\$\$

Using Einstein’s relation \$E=mc^{2}\$, the corresponding binding energy \$E_{b}\$ is

\$\$

E_{b}= \Delta m\,c^{2}

\$\$

Typical binding energies are a few MeV per nucleon; the curve of \$E_{b}/A\$ explains why:

  • Heavy nuclei release energy by fission (splitting into fragments with higher \$E_{b}/A\$).
  • Light nuclei release energy by fusion (joining to form a nucleus with higher \$E_{b}/A\$).

7. Nuclear Reactions and Applications

  • Fission – a heavy nucleus splits, emitting neutrons and ≈ 200 MeV per event.

    \$^{235}{92}\text{U}+^{1}{0}n\;\rightarrow\;^{141}{56}\text{Ba}+^{92}{36}\text{Kr}+3^{1}_{0}n+\text{energy}\$

  • Fusion – light nuclei combine, releasing energy (e.g. deuterium‑tritium reaction).

    \$^{2}{1}\text{H}+^{3}{1}\text{H}\rightarrow^{4}{2}\text{He}+^{1}{0}n+\;17.6\;\text{MeV}\$

  • Medical applications

    • Positron Emission Tomography (PET) – uses β⁺ emitters such as \$^{18}_{9}\text{F}\$.
    • Radiotherapy – high‑energy γ‑rays from \$^{60}_{27}\text{Co}\$ or electron beams.
    • Diagnostic X‑rays – produced by bremsstrahlung when high‑energy electrons are decelerated in a target.

  • Industrial & safety – Geiger–Müller counters, cloud chambers, shielding calculations and neutron activation analysis all rely on the concepts above.

8. Practical Skills (AO3)

Cloud‑chamber experiment – Visualise α‑ and β‑tracks.

  1. Fill a sealed container with alcohol vapour and place a cold plate (dry ice) on top.
  2. Introduce a weak α/β source (e.g., a thoriated lantern mantle).
  3. Observe straight, thick α‑tracks and thinner, more erratic β‑tracks.
  4. Record track length and density; discuss how ionisation density relates to penetrating power.

  • Always wear lab coat, gloves, and eye protection when handling radioactive material.
  • Use a calibrated Geiger–Müller tube; record background counts and subtract them from sample counts.
  • To determine a half‑life experimentally, plot \$\ln(N)\$ versus time – the slope equals \$-\lambda\$.

9. Key Points to Remember

  • The nucleus contains almost all the atomic mass but occupies only ~10⁻⁵ of the atomic volume.
  • Protons define the element (\$Z\$); neutrons affect stability and give rise to isotopes.
  • Electrons balance the nuclear charge in a neutral atom and occupy discrete shells following the \$2n^{2}\$ rule.
  • α, β⁻, β⁺ and γ radiations differ in composition, charge, penetrating power and ionising ability.
  • In every nuclear reaction, both charge (\$Z\$) and nucleon number (\$A\$) are conserved.
  • Radioactive decay follows an exponential law; the half‑life is a characteristic constant for each radionuclide.
  • Mass defect and binding energy explain why energy is released in fission (heavy nuclei) and fusion (light nuclei).
  • Understanding nuclear processes underpins applications in medicine, industry, energy generation and radiation safety.

10. Suggested Classroom Diagram

Simple schematic of an atom: a central sphere (the nucleus) containing red dots (protons) and blue dots (neutrons); concentric circles labelled \$K\$, \$L\$, \$M\$, … with the correct number of yellow dots (electrons) for a chosen element (e.g., sodium, \$Z=11\$).