By the end of this lesson you will be able to:
| Term | Definition | Physics Examples |
|---|---|---|
| Scalar | A quantity that has magnitude only. | Mass (kg), temperature (°C), time (s), electric charge (C) |
| Vector | A quantity that has both magnitude and direction. | Displacement (m), velocity (m s⁻¹), force (N), electric field (N C⁻¹) |
The standard unit vectors are:
Any coplanar vector \(\vec{A}\) can be written uniquely as
\[
\boxed{\;\vec{A}=Ax\hat{\mathbf i}+Ay\hat{\mathbf j}\;}
\]
where \(Ax\) and \(Ay\) are the perpendicular (horizontal and vertical) components.
For a vector \(\vec{A}\) of magnitude \(A\) making an angle \(\theta\) with the positive \(x\)-axis:
\[
\begin{aligned}
A_x &= A\cos\theta ,\\[2mm]
A_y &= A\sin\theta .
\end{aligned}
\]
These formulas follow directly from right‑triangle trigonometry. The representation is unique for a given \(\theta\) (i.e. a single pair \((Ax,Ay)\) corresponds to one vector).
\[
\begin{aligned}
A &= \sqrt{Ax^{2}+Ay^{2}},\\[2mm]
\theta &= \operatorname{atan2}(Ay,\,Ax)\;,
\end{aligned}
\]
where atan2 automatically selects the correct quadrant for \(\theta\). If a calculator does not have atan2, use the signs of \(Ax\) and \(Ay\) to adjust the result of \(\tan^{-1}(Ay/Ax)\).
A force \(\vec{F}\) has magnitude \(50\;\text{N}\) and acts \(30^{\circ}\) above the positive \(x\)-axis.
\[
\begin{aligned}
F_x &= 50\cos30^{\circ}=50\times0.866 = 43.3\;\text{N},\\[2mm]
F_y &= 50\sin30^{\circ}=50\times0.500 = 25.0\;\text{N}.
\end{aligned}
\]
\[
\boxed{\;\vec{F}= 43.3\hat{\mathbf i}+25.0\hat{\mathbf j}\;\text{N}\;}
\]
When to use: Quick estimates, AO2 sketch questions, or when only a visual answer is required.
For \(\vec{A}=Ax\hat{\mathbf i}+Ay\hat{\mathbf j}\) and \(\vec{B}=Bx\hat{\mathbf i}+By\hat{\mathbf j}\):
\[
\begin{aligned}
\vec{A}+\vec{B} &= (Ax+Bx)\hat{\mathbf i}+(Ay+By)\hat{\mathbf j},\\[2mm]
\vec{A}-\vec{B} &= (Ax-Bx)\hat{\mathbf i}+(Ay-By)\hat{\mathbf j}.
\end{aligned}
\]
After obtaining the resultant components, convert back to magnitude and direction using the formulas in the previous section.
| Aspect | Graphical (Tip‑to‑Tail) | Component (Algebraic) |
|---|---|---|
| Typical use | Quick visual checks, AO2 sketch questions | Exact numerical results, exam questions requiring AO1–AO2 |
| Steps | 1. Align vectors tip‑to‑tail 2. Draw resultant 3. Measure length & angle | 1. Resolve each vector into \(x\) & \(y\) components 2. Add/subtract components 3. Re‑combine to magnitude & direction |
| Tools needed | Ruler, protractor, scale | Calculator (trig functions), algebra |
| Accuracy | Limited by drawing precision | High (subject to calculator rounding) |
Force \(\vec{F}_1\): 30 N at \(30^{\circ}\) above the \(x\)-axis.
Force \(\vec{F}_2\): 40 N at \(120^{\circ}\) anticlockwise from the \(x\)-axis.
Step 1 – Resolve into components
\[
\begin{aligned}
F_{1x} &= 30\cos30^{\circ}=25.98\;\text{N}, &
F_{1y} &= 30\sin30^{\circ}=15.00\;\text{N},\\[2mm]
F_{2x} &= 40\cos120^{\circ}=40(-0.5)=-20.0\;\text{N}, &
F_{2y} &= 40\sin120^{\circ}=40(0.866)=34.64\;\text{N}.
\end{aligned}
\]
Step 2 – Add components
\[
\begin{aligned}
Rx &= F{1x}+F_{2x}=25.98-20.0=5.98\;\text{N},\\
Ry &= F{1y}+F_{2y}=15.00+34.64=49.64\;\text{N}.
\end{aligned}
\]
Step 3 – Resultant magnitude & direction
\[
\begin{aligned}
R &= \sqrt{Rx^{2}+Ry^{2}}=\sqrt{5.98^{2}+49.64^{2}}=50.0\;\text{N},\\[2mm]
\theta &= \operatorname{atan2}(49.64,\,5.98)=83.1^{\circ}\;\text{above the }x\text{-axis}.
\end{aligned}
\]
\[
\boxed{\;\vec{R}=5.98\hat{\mathbf i}+49.64\hat{\mathbf j}\;\text{N}\;\approx\;50\;\text{N at }83^{\circ}\;}
\]
This technique is often sufficient for multiple‑choice or short‑answer questions where an exact calculation is unnecessary.
| Quantity | Symbol | Units | Typical Components |
|---|---|---|---|
| Displacement | \(\vec{s}\) | m | \(sx,\;sy\) |
| Velocity | \(\vec{v}\) | m s⁻¹ | \(vx,\;vy\) |
| Acceleration | \(\vec{a}\) | m s⁻² | \(ax,\;ay\) |
| Force | \(\vec{F}\) | N | \(Fx,\;Fy\) |
| Electric field | \(\vec{E}\) | N C⁻¹ | \(Ex,\;Ey\) |
Reverse: \(A=\sqrt{Ax^{2}+Ay^{2}}\), \(\theta=\operatorname{atan2}(Ay,Ax)\).
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.