describe the changes to quark composition that take place during β– and β+ decay

β‑Radiation and Quark‑Flavour Change (Cambridge AS & A Level 9702)

1. Types of nuclear radiation and nuclide notation

  • α‑decay: emission of a helium‑4 nucleus,  \(^{4}_{2}\text{He}\) (α‑particle). Heavy, +2 e charge, low penetration.
  • β⁻‑decay: a neutron in the nucleus is transformed into a proton with the emission of an electron \(e^-\) and an electron‑antineutrino \(\bar{\nu}_e\).
  • β⁺‑decay (positron emission): a proton becomes a neutron while emitting a positron \(e^+\) and an electron‑neutrino \(\nu_e\). (If the Q‑value is too low, the nucleus may instead undergo electron capture.)
  • γ‑radiation: emission of a high‑energy photon; no change in the composition of the nucleus, only a loss of excess energy.

Nuclides are written in the standard Cambridge notation AZ X, where A is the mass number (total nucleons) and Z the atomic number (protons). Example:  \(^{14}_{6}\text{C}\) (carbon‑14).

2. β‑decay equations and the conserved quantities

For a parent nuclide \(^{A}_{Z}\!X\) the two β‑decays are expressed as

β⁻ decay \(^{A}{Z}\!X \;\longrightarrow\; ^{A}{Z+1}\!Y \;+\; e^- \;+\; \bar{\nu}_e\)

β⁺ decay \(^{A}{Z}\!X \;\longrightarrow\; ^{A}{Z-1}\!Y \;+\; e^+ \;+\; \nu_e\)

These equations satisfy the Cambridge‑required conservation laws:

  • Charge: the emitted lepton carries ±1 e, exactly compensating the change in \(Z\) (‑1 for β⁺, +1 for β⁻).
  • Mass number (A): unchanged; a neutron ↔ proton conversion does not create or destroy nucleons.
  • Lepton number: each lepton is paired with its corresponding (anti)neutrino, giving a total lepton number of 0 before and after the decay.
  • Energy (Q‑value): the difference in nuclear binding energy,

    \[

    Q = \big[M(^{A}{Z}X)-M(^{A}{Z\pm1}Y)\big]c^{2},

    \]

    is shared between the recoil nucleus, the electron/positron and the (anti)neutrino. Because the (anti)neutrino can take any energy up to \(Q\), the observed β‑spectrum is continuous.

3. Fundamental particles involved in β‑decay

3.1 Quarks

FlavourCharge (e)Mass (MeV c⁻²)
up \(u\)+ \( \tfrac{2}{3}\)≈ 2.2
down \(d\)– \( \tfrac{1}{3}\)≈ 4.7
charm \(c\)+ \( \tfrac{2}{3}\)≈ 1270
strange \(s\)– \( \tfrac{1}{3}\)≈ 96
top \(t\)+ \( \tfrac{2}{3}\)≈ 173 000
bottom \(b\)– \( \tfrac{1}{3}\)≈ 4180

Protons and neutrons (the nucleons) are baryons made of the two light flavours only:

  • Proton \(p = uud\) (Charge = +1 e)
  • Neutron \(n = udd\) (Charge = 0 e)

3.2 Leptons

ParticleCharge (e)Lepton number
\(e^-\)– 1+1
\(\nu_e\)0+1
\(e^+\)+ 1–1
\(\bar{\nu}_e\)0–1

4. Weak interaction and quark‑flavour change

The weak force is carried by the massive charged bosons \(W^{\pm}\) (mass ≈ 80 GeV c⁻²). A quark can change its flavour by emitting or absorbing a \(W\) boson:

  • \(d \;\longrightarrow\; u + W^-\) (– \( \tfrac{1}{3}\) → + \( \tfrac{2}{3}\); the \(W^-\) carries –1 e)
  • \(u \;\longrightarrow\; d + W^+\) (+ \( \tfrac{2}{3}\) → – \( \tfrac{1}{3}\); the \(W^+\) carries +1 e)

The emitted \(W^{\pm}\) boson subsequently decays into a lepton–neutrino pair, preserving charge and lepton number.

5. β⁻ decay – from the quark level to the whole nucleus

  1. Nuclear equation \(^{A}{Z}\!X \;\longrightarrow\; ^{A}{Z+1}\!Y \;+\; e^- \;+\; \bar{\nu}_e\)
  2. Quark‑level step \(d \;\longrightarrow\; u + W^-\)
  3. W‑boson decay \(W^- \;\longrightarrow\; e^- + \bar{\nu}_e\)
  4. Resulting nucleon change \(udd\;(n) \;\longrightarrow\; uud\;(p)\)
  5. Energy released Typical Q‑values are a few MeV; the electron and antineutrino share this energy, giving the characteristic continuous β spectrum.

6. β⁺ decay (positron emission) – quark picture

  1. Nuclear equation \(^{A}{Z}\!X \;\longrightarrow\; ^{A}{Z-1}\!Y \;+\; e^+ \;+\; \nu_e\)
  2. Quark‑level step \(u \;\longrightarrow\; d + W^+\)
  3. W‑boson decay \(W^+ \;\longrightarrow\; e^+ + \nu_e\)
  4. Resulting nucleon change \(uud\;(p) \;\longrightarrow\; udd\;(n)\)
  5. Energy requirement Because a positron of mass \(me\) is created, the Q‑value must exceed \(2mec^2\) ≈ 1.022 MeV. If this condition is not met, the nucleus decays by electron capture instead.

7. Comparison of quark changes in β‑decay

DecayInitial nucleon (quarks)Quark transitionFinal nucleon (quarks)Leptons emitted
β⁻Neutron \(udd\)\(d \rightarrow u + W^-\)Proton \(uud\)\(e^- + \bar{\nu}_e\)
β⁺Proton \(uud\)\(u \rightarrow d + W^+\)Neutron \(udd\)\(e^+ + \nu_e\)

8. Key points to remember for the Cambridge syllabus

  1. The weak interaction changes quark flavour via the exchange of a charged \(W^{\pm}\) boson.
  2. β⁻ decay: \(d \rightarrow u\) (neutron → proton) + \(e^- + \bar{\nu}_e\).
  3. β⁺ decay: \(u \rightarrow d\) (proton → neutron) + \(e^+ + \nu_e\).
  4. In β‑decay the mass number \(A\) is conserved; the atomic number \(Z\) changes by +1 (β⁻) or ‑1 (β⁺).
  5. Charge, baryon number and lepton number are all conserved in each decay step.
  6. The Q‑value must be > 1.022 MeV for β⁺ emission; otherwise electron capture occurs.
  7. The continuous β spectrum arises because the (anti)neutrino carries away a variable amount of the released energy.
  8. Only the up and down quarks participate in ordinary β‑decay; the heavier flavours (s, c, b, t) appear in more massive hadrons and are not required for the AS/A‑Level curriculum.