Published by Patrick Mutisya · 14 days ago
In the Standard Model, nucleons are made of up‑type (\$u\$) and down‑type (\$d\$) quarks:
β‑decay processes involve the weak interaction, which changes the flavour of a quark by the exchange of a \$W^{\pm}\$ boson. The change in quark composition is the key to understanding the transformation of one nucleon into another.
In β⁻ decay a neutron inside a nucleus is transformed into a proton, emitting an electron (\$e^-\$) and an electron antineutrino (\$\bar{\nu}_e\$).
At the quark level the reaction is:
\$d \;\rightarrow\; u + W^-\$
\$W^- \;\rightarrow\; e^- + \bar{\nu}_e\$
Thus the down‑quark (\$d\$) inside the neutron changes to an up‑quark (\$u\$), converting the neutron (\$udd\$) into a proton (\$uud\$).
In β⁺ decay a proton is transformed into a neutron, emitting a positron (\$e^+\$) and an electron neutrino (\$\nu_e\$). This occurs when a nucleus has too many protons.
At the quark level the reaction is:
\$u \;\rightarrow\; d + W^+\$
\$W^+ \;\rightarrow\; e^+ + \nu_e\$
Here an up‑quark (\$u\$) inside the proton changes to a down‑quark (\$d\$), turning the proton (\$uud\$) into a neutron (\$udd\$).
| Decay Type | Initial Nucleon (Quarks) | Quark Transition | Final Nucleon (Quarks) | Emitted Leptons |
|---|---|---|---|---|
| β⁻ | Neutron \$udd\$ | \$d \rightarrow u + W^-\$ | Proton \$uud\$ | \$e^- + \bar{\nu}_e\$ |
| β⁺ | Proton \$uud\$ | \$u \rightarrow d + W^+\$ | Neutron \$udd\$ | \$e^+ + \nu_e\$ |