Published by Patrick Mutisya · 14 days ago
Recall and use the fact that the mean (average) power delivered to a purely resistive load by a sinusoidal alternating current is half the maximum (peak) power.
Starting from the instantaneous power expression for a resistor:
\$p(t)=v(t)i(t)=V{\max}I{\max}\sin^{2}(\omega t)\$
Using the trigonometric identity \$\sin^{2}x=\frac{1-\cos 2x}{2}\$, we obtain:
\$p(t)=\frac{V{\max}I{\max}}{2}\bigl[1-\cos(2\omega t)\bigr]\$
The mean power \$\overline{P}\$ is the average of \$p(t)\$ over one period \$T=\frac{2\pi}{\omega}\$:
\$\$\overline{P}= \frac{1}{T}\int_{0}^{T}p(t)\,dt
=\frac{V{\max}I{\max}}{2}\left[\frac{1}{T}\int{0}^{T}1\,dt-\frac{1}{T}\int{0}^{T}\cos(2\omega t)\,dt\right]\$\$
The integral of \$\cos(2\omega t)\$ over a full cycle is zero, leaving:
\$\boxed{\;\overline{P}= \frac{V{\max}I{\max}}{2}\;}\$
Since the maximum (peak) power occurs when \$\sin^{2}(\omega t)=1\$, the peak power is
\$P{\max}=V{\max}I_{\max}\$
Therefore, for a sinusoidal AC in a resistive load:
\$\boxed{\;\overline{P}= \frac{1}{2}P_{\max}\;}\$
RMS values provide a convenient way to express AC quantities in terms of equivalent DC values:
\$I{\text{rms}}=\frac{I{\max}}{\sqrt{2}},\qquad V{\text{rms}}=\frac{V{\max}}{\sqrt{2}}\$
Using RMS values, the mean power can also be written as:
\$\overline{P}=I{\text{rms}}^{2}R = \frac{V{\text{rms}}^{2}}{R}=V{\text{rms}}I{\text{rms}}\$
These expressions are algebraically equivalent to the “half‑maximum” result derived above.
| Quantity | Peak (Maximum) Value | RMS \cdot alue | Relation to Mean Power |
|---|---|---|---|
| Current | \$I_{\max}\$ | \$I{\text{rms}}=I{\max}/\sqrt{2}\$ | \$\displaystyle \overline{P}= \frac{1}{2}P{\max}=I{\text{rms}}^{2}R\$ |
| Voltage | \$V_{\max}\$ | \$V{\text{rms}}=V{\max}/\sqrt{2}\$ | |
| Power | \$P{\max}=V{\max}I_{\max}\$ | \$P{\text{rms}}=V{\text{rms}}I_{\text{rms}}\$ |
Problem: A sinusoidal AC source supplies a resistor \$R=10\;\Omega\$. The peak voltage across the resistor is \$V_{\max}=100\;\text{V}\$. Find the mean power dissipated in the resistor.
\$V{\text{rms}}=\frac{V{\max}}{\sqrt{2}}=\frac{100}{\sqrt{2}}\;\text{V}\approx 70.7\;\text{V}\$
\$\overline{P}= \frac{V_{\text{rms}}^{2}}{R}= \frac{(70.7)^{2}}{10}\;\text{W}\approx 500\;\text{W}\$
\$P{\max}= \frac{V{\max}^{2}}{R}= \frac{100^{2}}{10}=1000\;\text{W}\$
\$\overline{P}= \frac{1}{2}P_{\max}= \frac{1}{2}\times1000=500\;\text{W}\$
The two methods give the same result, confirming the relationship.