| Syllabus item | Notes covered | Assessment objectives |
|---|---|---|
| 19.1 – Definition of a capacitor and capacitance | Section 2 | AO1 |
| 19.2 – Parallel‑plate capacitor formula, dielectrics | Section 3 | AO1, AO2 |
| 19.3 – Energy stored, RC‑time constant, series & parallel combinations | Sections 4‑6 | AO1, AO2, AO3 |
| Practical skills (Paper 3 & 5) | Section 7 | AO3 |
\[
C=\frac{Q}{V}
\]
Units: farad (F), where \(1\;\text{F}=1\;\text{C V}^{-1}\).
Typical ranges in the syllabus:
| Device | Typical capacitance |
|---|---|
| Electrolytic capacitor | 10 µF – 1000 µF |
| Film / ceramic capacitor | 0.1 pF – 10 µF |
\[
E=\frac{\sigma}{\varepsilon0\varepsilonr}
\]
\[
\boxed{C=\varepsilon0\varepsilonr\frac{A}{d}}
\]
Important note (edge effects): The formula assumes \(A\gg d\) so that fringe fields are negligible. When this condition is not met the calculated capacitance is an underestimate.
The work done in moving charge onto the plates is stored as electrostatic potential energy:
\[
W=\int_{0}^{Q}V\,\mathrm{d}Q
=\int_{0}^{Q}\frac{Q'}{C}\,\mathrm{d}Q'
=\frac{1}{2}\frac{Q^{2}}{C}
=\frac{1}{2}CV^{2}
=\frac{1}{2}QV
\]
Example (AO1) – A 10 µF capacitor charged to 12 V:
\[
W=\tfrac12CV^{2}
=\tfrac12(10\times10^{-6})(12^{2})
=7.2\times10^{-4}\;\text{J}=0.72\;\text{mJ}
\]
When a charged capacitor is connected across a resistor \(R\), the voltage and charge decay exponentially:
\[
V(t)=V_{0}e^{-t/RC},\qquad
Q(t)=Q_{0}e^{-t/RC}
\]
The product \(\tau =RC\) is the time constant. After one \(\tau\) the voltage (or charge) has fallen to \(\frac{1}{e}\approx0.368\) of its initial value.
Example (AO2) – 4.7 µF capacitor discharging through 2 kΩ:
\[
\tau =RC = (2.0\times10^{3})(4.7\times10^{-6}) = 9.4\times10^{-3}\;\text{s}=9.4\;\text{ms}
\]
\[
V(20\text{ ms}) = V{0}e^{-20/9.4}=V{0}e^{-2.13}=0.12\,V_{0}
\]
\[
\boxed{C{\text{eq}}=\displaystyle\sum{i=1}^{n}C_{i}}
\]
\[
\boxed{\displaystyle\frac{1}{C{\text{eq}}}= \displaystyle\sum{i=1}^{n}\frac{1}{C_{i}}}
\]
Derivation (two capacitors, AO2):
\[
V=V{1}+V{2}=Q\!\left(\frac{1}{C{1}}+\frac{1}{C{2}}\right)
\quad\Longrightarrow\quad
C_{\text{eq}}=\frac{Q}{V}
\;\Rightarrow\;
\frac{1}{C{\text{eq}}}= \frac{1}{C{1}}+\frac{1}{C_{2}}
\]
Work from the innermost combination outwards, applying the appropriate rule at each step.
Worked example – \(C{1}=2\;\mu\text{F},\;C{2}=3\;\mu\text{F},\;C_{3}=6\;\mu\text{F}\).
\[
C_{\text{eq}}=2+3+6=11\;\mu\text{F}
\]
Series pair:
\[
\frac{1}{C_{12}}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}
\;\Longrightarrow\;
C_{12}= \frac{6}{5}=1.2\;\mu\text{F}
\]
Parallel with \(C_{3}\):
\[
C{\text{eq}}=C{12}+C_{3}=1.2+6=7.2\;\mu\text{F}
\]
“Design an experiment to determine the dielectric constant of a sheet of mica placed between the plates of a parallel‑plate capacitor. State the equipment, procedure, how you would calculate \(\varepsilon_r\), and discuss at least two possible sources of systematic error.”
| Configuration | Formula | Key points |
|---|---|---|
| Parallel‑plate (ideal) | \(C=\varepsilon0\varepsilonr\dfrac{A}{d}\) | \(\uparrow A\) ↑ \(C\); \(\uparrow d\) ↓ \(C\); dielectric multiplies by \(\varepsilon_r\). |
| Parallel connection | \(C{\text{eq}}=\displaystyle\sum Ci\) | Same voltage on each; charges add. |
| Series connection | \(\displaystyle\frac{1}{C{\text{eq}}}= \displaystyle\sum\frac{1}{Ci}\) | Same charge on each; voltages add. |
| Energy stored | \(W=\tfrac12CV^{2}= \tfrac12QV = \tfrac{Q^{2}}{2C}\) | Energy supplied by the source while charging. |
| RC discharge | \(V(t)=V_{0}e^{-t/RC},\;\;\tau=RC\) | After one \(\tau\) voltage = 0.368 \(V_{0}\). |
Solution
\[
\frac{1}{C_{\text{eq}}}= \frac{1}{4}+\frac{1}{6}= \frac{5}{12}
\;\Longrightarrow\;
C_{\text{eq}}= \frac{12}{5}=2.4\;\mu\text{F}
\]
\[
Q=C_{\text{eq}}V = 2.4\times10^{-6}\times12 = 2.88\times10^{-5}\;\text{C}
\]
\[
V{1}= \frac{Q}{C{1}} = \frac{2.88\times10^{-5}}{4\times10^{-6}} = 7.2\;\text{V}
\]
\[
V{2}= \frac{Q}{C{2}} = \frac{2.88\times10^{-5}}{6\times10^{-6}} = 4.8\;\text{V}
\]
Solution
Series of three \(5\;\mu\text{F}\):
\[
\frac{1}{C_{s}}= \frac{1}{5}+\frac{1}{5}+\frac{1}{5}= \frac{3}{5}
\;\Longrightarrow\;
C_{s}= \frac{5}{3}=1.67\;\mu\text{F}
\]
Parallel with \(10\;\mu\text{F}\):
\[
C_{\text{eq}}=10+1.67=11.67\;\mu\text{F}
\]
Solution
\[
C=\varepsilon{0}\varepsilon{r}\frac{A}{d}
=(8.85\times10^{-12})(1)\frac{0.02}{1.5\times10^{-3}}
=1.18\times10^{-10}\;\text{F}=118\;\text{pF}
\]
Solution
\[
\tau =RC = (4.7\times10^{5})(22\times10^{-6}) = 10.34\;\text{s}
\]
\[
V(0.5\text{ s}) = 15\,e^{-0.5/10.34}=15\,e^{-0.048}=14.3\;\text{V}
\]
Solution
\[
W_{a}= \tfrac12(5\times10^{-6})(20^{2}) = 1.0\times10^{-3}\;\text{J}
\]
\[
W_{b}= \tfrac12(10\times10^{-6})(12^{2}) = 0.72\times10^{-3}\;\text{J}
\]
Capacitor (a) stores more energy.
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.